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ABSTRACT

Context. There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints
for tracing the origin of individual systems, narrowing down the initial parameter space.
Aims. We investigate the origin and evolution of six Algol systems with accretion disks to find the initial parameters and evolutionary
constraints for them.
Methods. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed
individual systems.
Results. Initial parameters for six Algol systems with accretion disks were determined matching both the present system parameters
and the observed disk characteristics.
Conclusions. When Roche Lobe Overflow (RLOF) starts during core hydrogen burning of the donor, the disk lifetime was found to
be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.
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1. Introduction

Peters (2001) defines an Algol as a semidetached binary in which
the less massive star fills its Roche Lobe (RL) and is the cooler,
fainter and larger, while the most massive star does not fill its RL
and is still on the main sequence.

The evolution of a binary is conservative when mass and
angular momentum of the system remain constant. Eggleton
(2000) introduced the word “liberal” when this is not the case.
However, it is difficult to calculate the amount of mass that
leaves the system. Wellstein (2001) assumes that mass is lost
from a massive system as soon as the gainer spins at critical ve-
locity. Van Rensbergen et al. (2008) expand this criterion esti-
mating the temperature of a high temperature accretion region
(HTAR) so that the sum of rapid rotation and radiation pressure
from the hot region overcomes gravitation and drives mass out of
the binary. This criterion should be refined as soon as more ob-
served values of sizes and temperatures of hot regions are avail-
able.

Orbital periods of Algols are known accurately. Somewhat
different values of masses, radii and effective temperatures of
the components are found in the literature (e.g. in the catalogs of
Budding et al. 2004 and Brancewicz & Dworak 1980).

The most important problems in modeling an individual sys-
tem are that a binary evolutionary calculation starts with as-
sumed values of initial mass of the donor (subscript d) and the
gainer (subscript g) and the initial period of the system. This in-
troduces an intrinsic uncertainty since the present values of the
masses are not accurately known. Very little to nothing is known
about possible present or past mass loss and subsequent loss of
angular momentum from the system.

Algol systems with an accretion disk are a special subset,
as the accretion disk puts additional constraints on modeling the
evolution of the system. The characteristics of six of them are
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elaborated further in section 4. We will use them to constrain
the parameters of the progenitors and their evolution. We first
discuss the changes that have been made to the evolution code
since the one used in previous liberal binary calculations (Van
Rensbergen et al. 2008, 2011) and the joined catalog.

2. Modifications in the binary evolution code

2.1. Tides

Tidal interactions modulate the angular velocity of a binary
member (ω) with the angular velocity of the system (ωorb).
Following Wellstein (2001) we have

1
ω − ωorb

dωorb

dt
= −

1
τsync fsync

= −
1

tsync
(1)

where tsync is the synchronization time and τsync is a charac-
teristic time associated with the theory of Darwin (1879)

τsync (yr) = q−2
( a
R

)6
(2)

The star that is synchronized is in the denominator of the
expression for the mass ratio q. Wellstein (2001) uses fsync=1
for weak tides and fsync= 0.1 for strong tides in his scenario for
liberal evolution of massive close binaries. Synchronization is
strong on a star with a radius (R) comparable to the size of the
semimajor axis of the binary (a).

If stars rotate asynchronously with the orbit, their spin
changes by the tides, changing their angular momentum with
an amount

∆Jspin = I (ωorb − ω) [1 − e
−∆t

tsync ] (3)

To avoid the artificial quantity fsync we calculate tsync with a
physical model, discriminating between convective and radiative
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envelopes. Hurley et al. (2002) use an expression of Hut (1981)
to calculate tsync for circular orbits of stars with a convective en-
velope

tsync = q−2
( a
R

)6 1
3 k2

tF
I

M R2 (4)

where k2 is the apsidal motion constant; tF is the viscous
friction time; and M, R, and I are respectively the stellar mass,
radius and moment of inertia. Following Zahn (1977) it is possi-
ble to write tF = R

νt
, where νt is the coefficient of eddy viscosity.

It is clear that νt = 0 for a star with an envelope in radiative equi-
librium, so that for these stars tF is infinite and tidal friction is
not at work. If a convection region is a substantial fraction of
a star and if convection transports most of the energy flux, the
viscous friction time (Zahn, 1977) is

tF(yr) =

(
M R2

L

) 1
3

= 0.4311
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[ R
R�

]2

L
L�


1
3

(5)

Relation (4) can thus be written as:

tsync(yr) = 0.4311 q−2
( a
R

)6 1
3 k2
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 M
M�

[ R
R�

]2

L
L�


1
3

(6)

During stellar evolution k2 can be calculated from a simpli-
fied formula given by Kopal (1959), also used by Odell (1974)
and Kopal (1978), using an integral from the center to the edge
of the gainer.

k2 =
16 π

5 M R2

∫ Rg

0
ρ(r) r2 dr (7)

Hilditch (2001) gives an expression of Zahn (1975) to cal-
culate the tidal action on a star with a radiative envelope and a
convective core. Owing to the convective core the tidal torque
mechanism is at work resulting from the oscillation of the con-
vective core. The corresponding synchronization time is

tsync(yr) = 3.1816 10−6

 R
R�
M
M�


1
2 I

M R2

×
1

E2
q−2

( a
R

)8.5 1

(1 + q)
5
6

(8)

The strength of the tide depends critically upon the size of
the convective core. The tidal-torque constant E2 is zero for stars
with mass below 1.25 M� so that this mechanism has no effect
on a star with a convective atmosphere.

However, the radius of the convective core is larger than
given by the Schwarzschild (1958) criterion. Using the mixing
length ` of the path after which a convective cell dissolves and
the pressure scale height HP, the overshooting parameter α is
defined as α = `/HP.

Our choice of values of E2 calculated by Claret (2004) with
overshooting of the convective core characterized by α = 0.2 is
justified for the sample of binaries in this paper. We used the
spectroscopic HRD proposed by Langer & Kudritzki (2014).
The location in this diagram of the “red points” (coolest points
during main sequence evolution) of massive stars was taken from
Castro et al. (2014) and MacDonald et al. (2012) for lower mass

stars. We calculated the main sequence evolution of single stars
between 2 and 30M� using different values of the parameter α.
We found that the choice α = 0.2 is justified for stars with masses
below 12.5M�, growing gradually up to α = 0.4 at 30M�.

Expressions (6) and (8) refine and quantify the original the-
ory of Darwin (1879). Belczynski et al. (2008) apply radiative
damping to stars with radiative envelopes: Main sequence stars
with mass above MMS ,conv = 1.15M�, CHeB stars above 7M�,
massive evolved He stars, and He MS stars. For all other stars
convective damping is applied. We assume that during RLOF
the atmospheres of both stars are sufficiently disturbed so they
can be considered to be in convective equilibrium.

Tidal action produced by meridional circulation (Tassoul
2000) can be added to the Darwin theory in order to realize syn-
chronization of binaries over a wider range than performed by
the Darwin interaction alone. The synchronization time in the
Tassoul theory is given by

tsync(yr) = 5.396 102+σ− N
4

1 + q
q

(L�
L

) 1
4
(

M
M�

) 3
4

×

(R�
R

)3

[P(days)]
11
4 (9)

In the same way as tF is the main uncertainty of the Hut the-
ory in Eq. (4), the values of N and σ are the main uncertainties
of the Tassoul theory in Eq. (9). The number N is given as a
function of the coefficients of turbulent and radiative viscosity:
10N =

νrad+νturb
νrad

. In the absence of turbulence we have for a radia-
tive envelope N = 0. We assume with Tassoul & Tassoul (1992)
that N takes the rather large value N = 10 for a convective en-
velope, because turbulent viscosity is always much larger than
radiative viscosity if convection is at work. The always uncer-
tain value of σ will be calculated within these assumptions so
that relation (9) reproduces observations best.

Using Kepler’s 3rd law tsync increases in relation (9) with in-

creasing separations as
(

a
R

)4.125
which is much slower than

(
a
R

)6

in relation (6) and
(

a
R

)8.5
in relation (8).

Claret et al. (1995) propose σ=1.6, leading to values of the
exponent respectively 3.6 (radiative) and 1.1 (convective) in re-
lation (9). We propose calculating σ so as to keep the compo-
nents of binaries synchronized up to orbital periods of 10 days
as observed by Matthews & Mathieu (1992) for main sequence
A stars. We calculated an extended set of binary main sequence
evolutions for stars between 1 and 30 M� with lower mass com-
panions. Initial periods were between 5 and 15 days, so that no
RLOF occurred during the main sequence life of the most mas-
sive component. The binaries exerted tidal interaction on one
another, starting with the Darwin tide (relation (6) for stars with
a convective envelope and relation (8) for stars with a radiative
envelope). The Darwin mechanism did not keep the observed
fraction of binaries synchronized. We added the Tassoul tide (9)
using different values of σ in order to achieve synchronization
within reasonable limits.

Figure 1 shows the evolution of the factor SYNC =
ωspin

ωorb
for

the primary in a binary pair 5M� + 2M�. The system starts syn-
chronized and the evolution is followed from ZAMS to the end
of hydrogen core burning for the primary. During this time the
less massive component remains synchronized, even if no tides
are at work. Without tide, the 5M� star is soon asynchronized.
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Accurate inspection of Figure 1 shows that the Darwin tide con-
tributes almost nothing to the synchronization of the 5M� pri-
mary. The contribution of the weak Tassoul tide (σ = 4.5) is
not of very much help. The Darwin tide enforced by the strong
Tassoul tide (σ = 3.5) restores synchronization most of the time
for this system with an orbital period of 10 days. Therefore, the
value 2 + σ − N

4 = 5.5 will be used in relation (9) for the tidal
tuning of a star with a radiative atmosphere.

In order to find a value for σ for a star with a convec-
tive atmosphere we followed the evolution of a binary pair
1.15M� + 1M�. We find that without tide the 1.15M� star is
soon asynchronized. Convective Darwin tides restore synchro-
nization for a 10 d orbital period without help of the Tassoul tide.
However, for a 15 d orbital period, the Darwin tide restores syn-
chronization less well. The Tassoul tide in its weak form (σ = 5)
restores synchronization completely. Therefore, we use the value
2 + σ − N

4 = 4.5 in relation (9) for the tidal tuning of stars with
a convective atmosphere.

The Tassoul and Darwin mechanisms act simultaneously, so
that the resulting synchronization times are given by

1
tsync

=
1

tsync,Darwin
+

1
tsync,Tassoul

(10)

2.2. Conservation of angular momentum

The total angular momentum JΣ of a binary is the sum of the
orbital angular momentum Jorb and the spin angular momenta of
gainer Jg and donor Jd . Tides continuously exchange amounts
of ∆Jd , ∆Jg ,∆Jorb . In the conservative case

∆JΣ = ∆Jd + ∆Jg + ∆Jorb = 0.

However, the system loses angular momentum through stel-
lar wind (∆Jwind < 0), and during its liberal era also through
mass loss out of the system (∆Jout < 0). Conservation of angular
momentum during evolution is then imposed by

∆Jd + ∆Jg + ∆Jorb − ∆Jwind − ∆Jout = 0 (11)

In this paper, we calculated ∆Jwind using Vink et al. (2001)
for stars hotter than 12500 K and De Jager et al. (1988) for cooler
stars. In the case of liberal evolution the quantity ∆Jout was cal-
culated as in previous papers (Van Rensbergen et al. 2008, 2011;
see also Siess et al. 2013) assuming that mass lost from the sys-
tem takes only the specific orbital angular momentum of the
gainer.

3. Obsevations

The observed data for which we calculated the most plausible
progenitors are given in Tables 1 (system parameters) and 2 (disk
parameters). Table 1 gives the observed system parameters to
be met by the evolution of our progenitors. Masses and radii
of β Lyr are from Zhao et al. (2008), the effective temperatures
and mass transfer rates from Harmanec (2002). Masses, radii and
effective temperatures for AU Mon are from Desmet et al. (2010)
and Atwood-Stone et al. (2012). We determined a very uncertain
mass transfer rate applying the (O-C) method on the data found
in the catalog of Kreiner et al. (2001). Masses, radii and effective
temperatures for V356 Sgr are from Dominis et al. (2005). The
mass transfer rate is from Ziolkowski (1985). Masses, radii and
effective temperatures for TT Hya are from Miller et al. (2007).
The mass transfer rate was determined from the data found in

the catalog of Kreiner et al. (2001). Masses, radii and effective
temperatures for RY Per are from Peters & Polidan (2004). No
trustworthy determination of the mass transfer rate was found
in this case. Masses and radii for SW Cyg are from Richards &
Albright (1999), the effective temperatures from Budding et al.
(2004) whereas the mass transfer rate is from Qian et al. (2002).

Table 2 compares observed luminosities, temperatures and
sizes of the six disks with the same quantities obtained in section
4.2 from the best models. Disk luminosities for SW Cyg and TT
Hya are taken from Albright & Richards (1996). The outer edge
temperature of AU Mon is from Djurasevic et al. (2010). Other
characteristic disk temperatures are from Miller et al. (2007) for
TT Hya, from Harmanec (2002) and Ak et al. (2007) for β Lyr
and from Wilson & Caldwell (1978) for V356 Sgr. The sizes
are from Atwood-Stone et al. (2012) for AU Mon, Albright &
Richards (1996) for SW Cyg, Peters (1989) for TT Hya, Sudar et
al. (2011) for RY Per, Mennickent & Djurasevic (2013) for β Lyr
and from Wilson & Caldwell (1978) for V356 Sgr. The size of
the disk in Table 2 is the disk radius divided by the Roche radius
of the gainer. Since accretion disks in Algols are seen almost
edge on, the model temperatures that were calculated at the edge
show a fair agreement with the observations in table 2.

4. Modeling six Algols with accretion disks

4.1. Modeling the stars

Using our binary evolutionary code with the modifications dis-
cussed in section 2 we determine in this subsection the progeni-
tors of six binaries with an accretion disk around the gainer. Four
of them turn out to evolve conservatively (AU Mon, SW Cyg, TT
Hya and RY Per), whereas β Lyr and V356 Sgr have liberal eras
during their evolution. In the conservative case the initial orbital
period of a system follows directly from the present situation
(subscript 1) for any combination of the initial masses (subscript
0).

P1

P0
=

(
Md,0 Mg,0

Md,1 Mg,1

)3

(12)

This relation disregards small deviations that are caused by
the stellar wind of both components and the action of the tides.
Mennickent (2014) proposes a (4 M� + 3.6 M�, P=3d) progeni-
tor for AU Mon with a 1.533 M� donor and a 6.067 M� gainer at
present. Since we model AU Mon towards a 1.2 M� donor and a
7 M� gainer our progenitors with initial mass ratio (4/3.6) need
to have an initial orbital period a little below 1.4 d, determined
from expression (12). With this small initial orbital period the
stars in the binary merge soon after birth.

All the gainers in Table 1 are main sequence stars whereas
donors are evolved beyond the main sequence.

Initial orbital periods of conservative cases were calculated
with expression (12).

Loss of mass in the liberal cases is triggered by the com-
bined action of rapid rotation and radiation pressure from the
HTAR region where the transformation of matter energy into ra-
diation is crucial. The radiative efficiency is defined through the
relation: Ladd = η Ṁ c2. For comparison we give some numbers:
η ≈ 0.007 for nuclear fusion, η ≈ 10−4 for an accreting white
dwarf, η ≈ 10−2 for an accreting neutron star. The value of η for
a hot spot on a main sequence gainer in the case of direct im-
pact was calculated by Van Rensbergen et al. (2011) and found
to be significantly smaller than in the case of a mass accreting
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Fig. 1. Evolution of SYNC =
ωspin
ωorb

, during the main sequence life of the 5M� primary in a 5M� + 2M� binary with a 10-day orbital period. From
bottom to top: without tide, Darwin tide contributing almost nothing to the synchronization, weak Tassoul tide added, strong Tassoul tide added.
The 5M� gainer needs the strong Tassoul tide to remain sufficiently synchronized.

System P Md Mg Rd Rg Log Te f f ,d Log Te f f ,g dM/dt
Units days M� M� R� R� M�/yr
β Lyr 12.91378 2.88 12.97 14.7 6.1 4.114 4.447 2.03E-5

AU Mon 11.11304 1.2 7.0 10.0 5.6 3.76 4.23 2.59E-6
V356 S gr 8.89611 2.8 10.4 11.7 5.2 3.954 4.362 1.90E-6
TT Hya 6.95343 0.63 2.77 5.98 1.99 3.68 3.99 6.85E-8
RY Per 6.68356 1.6 6.25 8.1 4.06 3.802 4.259
S W Cyg 4.57302 0.5 2.5 4.3 2.6 3.69 3.956 2.11E-7

Table 1. Adopted observed values of masses, radii, effective temperatures and mass loss rates of six Algols with accretion disks.The references
are given in section 3.

System Obs. Ldisk
Lg

Calc. Ldisk
Lg

Obs.Temp Calc.Tedge Calc.Te f f ,disk Obs.Size Calc.Size
β Lyr 0.713 [8500-9000 ] 8617 15233 0.91 0.90

AU Mon 0.666 5190 6546 11510 1.00 0.90
V356 S gr 0.293 [6000-7000 ] 11040 15610 0.65 0.50
TT Hya 0.414 0.903 7000 3110 5858 0.95 0.86
RY Per 0.616 7969 12456 0.85 0.80
S W Cyg 0.096 0.406 4093 6364 0.95 0.60

Table 2. Observed and calculated disk characteristics. The size is the radius of the disk divided by the Roche radius of the gainer. Only for AU
Mon the observed temperature is at the edge. The references are given in section 3

white dwarf. In the case of a gainer surrounded by a disk, the hot
spot could be located at the edge of the disk. Moreover, Bisikalo
(2007) observed and reproduced hot lines using 2D and 3D gas
dynamical simulations for disk systems. Using the same crite-
rion as used by Van Rensbergen et al. (2011) we found that four
out of six systems treated in this paper evolved conservatively.
The two liberal systems (V356 Sgr and β Lyr) were observed to
be ejecting mass into space.

Initial periods for liberal cases were calculated with Eq. (11)
assuming a loss of specific angular momentum ∆Jout equal to the
orbital angular momentum of the gainer. The mass loss out of
the system was found to be vertical on the orbital plane and has
been interpreted as bipolar jets for V356 Sgr by Peters & Polidan
(2004) and for β Lyr by Ak et al. (2007) and Harmanec (2002).
Mass loss through the second Lagrangian point is unlikely be-
cause this point is far away from the outer edge of the accretion

disk, and the large amount of angular momentum lost narrows
the orbit so that the formation of an accretion disk around the
gainer is inhibited.

Liberal cases were calculated with various amounts of mass
lost by the system. However, assuming a mass of [1.5-2] M� lost
by β Lyr and V356 Sgr gives the best fit with the observed data.

The progenitor systems are characterized by (P0,Md,0,Mg,0).
Evolutionary sequences were calculated for various combina-
tions of (Md,0,Mg,0) and evaluated at P = Pobs. The results are
shown in Table 3.

All the binaries in Table 1 have a mass ratio q < 0.27. For
those binaries that started RLOF during core hydrogen burning
of the donor this means that they are at the end of their RLOF
evolution. TT Hya and RY Per are not in that case.
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4.2. Modeling the disk

Our code also reproduces characteristics of the accretion disk
around the gainer. The criterion of Lubow & Shu (1975) uses
the concept of fractional radius $ which is the radius divided
by the semimajor axis. The fractional radius is determined at the
edge of the gainer $g and at specific distances $d

1 and $min so
that a semidetached binary changes from direct hit into accretion
through a transient disk as soon as $g = $d and later on through
a permanent accretion disk when $g = $min. At $d the disk
radius starts from Rdisk = Rg until the radius of a permanent disk
RPD is achieved at $min. For the radius of a permanent disk we
assumed, as do Carroll & Ostlie (2007), that RPD = 2 rcirc, a
value that is a somewhat larger than 2 $d.

The radius of the transient disk is calculated with the as-
sumption that the disk radius grows faster than linearly from $d
and Rg towards $min and RPD. A slower growth yields sizes of
transient disks that are smaller than observed.

The Lubow & Shu Figure 2 shows the fractional radii of the
six Algol gainers in this paper. All the observed fractional radii
of the gainers are located below $d as needed to develop an ac-
cretion disk. TT Hya is located below $min. The calculated disk
radii are listed in Table 2. The gainers of four systems are sur-
rounded by a transient accretion disk. TT Hya has a permanent
disk and β Lyr is at the transition between the transient and per-
manent disk. The observed size of the accretion disk in SW Cyg
is much larger than the calculated one. Since the present posi-
tion of SW Cyg in Figure 2 suggests that SW Cyg is far from
the permanent disk phase, we conclude that the observed size
overestimates reality.

The temperature in the disk is both caused by accretion and
by the luminosity of the gainer. The accretion luminosity of a
disk can be approximated with

Lacc,disk

L�
=

G Mg Ṁd

2 Rg
= 1.57066 107

( Mg

M�

)
Ṁd

(
in M�

yr

)
( Rg

R�

) (13)

This expression can be calculated even if the gainer has no
disk. Hence, it is better to calculate the accretion luminosity con-
sidering Bath & Pringle (1981), Horne (1985) and Rutten et al.
(1992) who give the distribution of the accretion temperature
through a disk around a white dwarf or a neutron star, using a
characteristic disk temperature Tdisk. With masses and radii in
solar units and mass transfer rates in M�/y, this characteristic
disk temperature created by accretion is defined by

Tdisk = 478074
 Mg Ṁd

R3
g

0.25

(14)

The distribution of the temperature through the disk is given
by

T (r)4 = T 4
disk

(
Rg

r

)3 1 −
√

Rg

r

 (15)

Integrating over both sides of the disk, the amount of accre-
tion luminosity in a ring with width dr at a distance r from the
gainer is

dL = 4 π σR rdrT (r)4erg s−1 (16)

1 This subscript ”d” does not have the same meaning as used for the
donor.

Integrating this quantity from the gainer’s edge to the outer
edge of the disk, one finds

Lacc

L�
= 9.0203 10−16 T 4

disk

(
Rg

R�

)3
 1

3 Rg

R�

−
1 − 2

3

√
Rg

Rdisk

Rdisk
R�

 (17)

Restricting the luminosity of the disk to only accretion yields
disk temperatures that are far below the temperatures listed in
Table 2.

In Algols hot disks surround hot gainers, whereas cooler
gainers yield cooler disks.

Moreover, the temperature at the inner edge of the disk needs
to equal the effective temperature of the gainer, a requirement
that is not fulfilled by relation (15). The temperature of the disk
is thus also influenced by the outgoing radiation of the gainer.
If the local luminosity in a disk is weakened only because of its
distance from the source (i.e. there is no absorption), the temper-
ature distribution is

Trad,0 = Te f f

(
Rg

r

)0.5

(18)

Using this zero-order temperature distribution and integrat-
ing from the edge of the gainer to the outer edge of the disk, the
radiation luminosity obtained is

Lrad

L�
= 9.0203 10−16 T 4

e f f ,g

(
Rg

R�

)2

ln
Rdisk

Rg
(19)

This expression overestimates the contribution of the radia-
tion since disk matter will prevent outgoing radiation from trav-
eling freely. Moreover, the temperatures measured at the outer
edge of the disk are far below those calculated with this assump-
tion. Unfortunately, an evaluation of the temperature at the outer
edge has only been reported in the case of AU Mon (Djurasevic
et al. 2010). Using their numbers the following is obtained

Trad,edge,real

Trad,edge,0
= 0.6 (20)

Since Trad,edge,0 can easily be calculated with relation (18)
we have adopted relation (20) to evaluate Trad,edge,real for the five
other systems. However, table 2 shows only a moderate agree-
ment between observed and calculated luminosities and temper-
atures of the disks. In order to improve the model, more and
better determined values of these quantities are needed.

For our final model, we approximate the temperature dis-
tribution in the disk adding an exponentially decreasing func-
tion starting at the gainer’s surface (h=0) where h is the distance
above the gainer’s surface

Trad(h) = Te f f ,g

(
Rg

r

)0.5

e
−h
H (21)

This temperature scale height H is determined so that expres-
sion (21) meets the effective temperature of the gainer at h=0 and
Trad,edge,real at the outer edge of the disk

H =
−

(
Rdisk − Rg

)
ln 0.6

(22)
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Fig. 2. Fractional radii (radius / semimajor axis) of six gainers and their accretion disks in the Lubow & Shu diagram. The observed radii of gainers
are dots below $d. The calculated disk radii are squares above $d. The two observed disk radii are triangles. The fractional radii of permanent
disks and the position of the gainer’s Roche radius are also indicated.

In this case, the integrated luminosity of the disk is

Lrad

L�
= 9.0203 10−16 T 4

e f f ,g

(
Rg

R�

)2

e
4 Rg

H

∫ Rdisk

Rg

e
−4 r

H

r
dr (23)

The integral in relation (23) is the difference of the values of
the exponential integral Ei(−4r

H ) at (r = Rdisk) and (r = Rg). The
radiative luminosity is added to the accretion luminosity (17) in
order to obtain the real luminosity. The effective temperature of
the disk, as given in Table 2, is calculated with

Te f f ,disk = 5770
(

Ldisk

L�

) 1
4
(

R�
Rdisk

) 1
2

4√
2 (24)

5. Evolution of the individual systems

Table 3 shows the characteristics of the initial binaries evolving
best into the present characteristics given in Table 1. The evolu-
tionary sequences possibly fitting the present observations were
evaluated at the moment that the present orbital period was at-
tained. The best set of initial parameters is always surrounded by
a few different initial systems that evolve into current compara-
ble results. However, progenitors with somewhat smaller initial
mass of the donor do not develop the observed accretion disk,
whereas future donor stars with a somewhat larger initial mass
merge with the gainer before an accretion disk can be formed.
In general we find that the masses of the initial system are de-
fined within 0.2M�. We find that the initial periods are in the
range [1.6-2.7] d, whereas the present orbital periods are in the
range [4.5-13] d. The initial mass ratios are in the range q =

Md
Mg

∈ [1.48-2.75] whereas the present mass ratios are in the range
[0.17-0.27]. The present state of the binaries is thus far behind
the orbital period minimum when both components of the binary
have equal masses.

Table 4 illustrates the disk behavior and the life of the binary
as an Algol. Table 4 mentions the duration of RLOF, and the
percent of time that the disk appeared during RLOF. The per-
cent of the total time of disk appearance that is shown by the
present disk is also included. The binary system is always an
Algol when the gainer is surrounded by an accretion disk. Four

systems (AU Mon, β Lyr, V356 Sgr and SW Cyg) underwent
previously RLOF during core hydrogen burning of the donor.
Their disks live for a short fraction of the RLOF era. The other
two systems (TY Hya and RY Per) start RLOF when hydrogen
is exhausted in the core of the donor star. Their disks live for a
large fraction of the following case B of RLOF. For all six cases,
the present binary has a gainer still on the main sequence and a
donor with a hydrogen exhausted core. The binary is an Algol
during the largest part of the RLOF era. Inspection of Table 4
also shows that the four systems that lived their first RLOF dur-
ing hydrogen core burning of the donor are currently (during
their second RLOF) at the end of their evolution (β Lyr, AU
Mon, V 356 Sgr and SW Cyg). The two systems that undergo
their first and only RLOF during hydrogen shell burning of the
donor are in the middle of their RLOF life (TT Hya and RY Per).

For each of the systems we calculated the evolution of the
luminosity of the disk as a function of time. The accretion lumi-
nosity is calculated with relations (13) and (17). The evolution
with time of the accretion luminosity reflects the evolution of the
mass loss rate.

The radiation luminosity that contributes most to the lumi-
nosity of the disk is triggered by the radiation from the gainer
that is absorbed in the disk and reradiated. Two approaches can
be considered: the optically thin approach given by relation (19)
and the optically thick approach given by relation (23). The re-
sulting effect of the two approaches, added to the accretion lu-
minosity (17), are shown in Figures 3 and 4.

They show the calculated evolution of the luminosity of the
disk divided by the luminosity of the gainer over the relative ex-
istence time of the disk, normalized to unity, respectively for the
short lived disk and liberally evolving medium mass binary β
Lyr and the longer lived disk and conservatively evolving low
mass binary TT Hya. The vertical bar indicates the present disk
with its present luminosity. It can be observed that in disks of
Algol-type systems the accretion luminosity is of secondary im-
portance as the luminosity originating from the gainer’s radia-
tion is two to three orders of magnitude larger. The present lu-
minosity of the disk of β Lyr (at 27 % of the disk life time) is
Log (Ldisk/L�)=4.21, about 71% the luminosity of the gainer.
When 48% of the disk lifetime has been consumed the luminos-
ity of the disk with a radius of 35 R� will exceed the luminos-
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System Init. mass Pinit Md Mg Rd Rg Log Te f f ,d Te f f ,g dM/dt
Units M� d M� M� R� R� M�/yr

1 2 3 4 5 6 7 8 9 10
β Lyr 10.35+7 2.3625 2.56 12.96 14.97 6.62 4.13 4.44 1.5E-5

AU Mon 5.7+2.5 2.2762 1.12 7.00 9.96 5.58 3.93 4.31 5.6E-7
V356 S gr 8.95+5.75 2.6051 2.65 10.08 11.76 5.54 4.13 4.39 6.2E-6
TT Hya 2.3+1.1 2.2819 0.59 2.81 5.84 1.95 3.67 4.06 3.2E-8
RY Per 5.25+2.6 2.6987 1.53 6.31 7.98 3.51 3.82 4.34 1.4E-5
S W Cyg 2.2+0.8 1.6383 0.50 2.50 4.17 2.26 3.69 4.01 4.4E-9

Table 3. Progenitors that fit the observations of Tables 1 and 2 most closely. Initial values are at the left (columns 2 and 3). Present values generated
by the model are in the last seven columns 4-10.

System Pre Algol Algol Algol Algol RLOF Disk Lifetime % Present Disk %
Direct hit Direct hit Trans Disk Perm Disk Total RLOF Disk appearance

β Lyr 1.680E5 9.425E6 4.200E4 8.40E4 9.719E6 1.296 0.2698
AU Mon 4.161E5 2.838E7 8.200E5 6.84E5 3.030E7 4.963 0.4325
V356 S gr 1.870E5 8.347E6 1.000E5 1.40E5 8.774E6 2.735 0.1530
TT Hya 7.900E5 1.553E6 2.045E6 1.40E7 1.839E7 87.259 0.2113
RY Per 9.020E4 2.900E4 2.400E4 6.32E5 7.752E5 84.623 0.0115
S W Cyg 4.222E6 2.739E8 3.400E7 2.40E7 3.361E8 17.256 0.3345

Table 4. Duration of different eras during RLOF. Pre Algol, Algol and disk eras of the six progenitors in this paper (in years). Percent of RLOF
that the disk is present. Fractional age of present disk.

ity of the gainer. The present luminosity of the disk of TT Hya
(at 21% of the disk life time) is Ldisk/L� = 56, about 90% the
luminosity of the gainer. When 30 % of the disk lifetime has
been consumed the luminosity of the large disk with a radius of
11.9 R� will exceed the luminosity of the gainer.

Figures 5 and 6 show the evolution of the gainer in the
HRD for the β Lyr and TT Hya. The disk phase is also indi-
cated. β Lyr has lived a Case A era of direct impact on the
gainer. TT Hya started RLOF after exhaustion of hydrogen in
the core of the donor. Both donors evolved through the main
sequence and are now transferring mass during their hydrogen
shell burning. As the orbit of β Lyr is now rapidly widening a
disk appears 2.63 ×107 y after ZAMS. This disk remains for
1.26 ×105 y, slightly more than 1% of the RLOF time. The
system lives 9.551 ×106 y as an Algol. Previously published
progenitors of β Lyr are from Ziolkowski (1985) (10 M� +
3.7 M�, P=3.44d), De Greve & Linnell (1994) (9 M� + 7.65
M�, P=4d) and Mennickent & Djurasevic (2013) (12 M� + 7.2
M�, P=2.5d). The present initial masses approximate those of
De Greve & Linnell (1994) calculated with external mass loss
(∆M=0.45 M�), but with a shorter initial period due to different
values of external mass loss (∆M=1.5 M�) and tidal interaction
effects. The present model agrees well with the progenitor pro-
posed by Mennickent & Djuracevic (2013), calculated with a
somewhat larger amount of mass lost by the system.

In the case of TT Hya a disk appears 7.49 ×108 y after
ZAMS. This disk remains for 1.60 ×107 y years, approximately
87% of the RLOF time. The system lives 1.76 ×107y as an Algol.

6. Conclusions

We extended our binary evolutionary code (Van Rensbergen
et al. 2008, 2011) allowing for the action of viscous friction,
tidal torque and meridional circulation. Matter leaving the sys-
tem takes away the angular momentum of the gainer into space.
Matter streams into interstellar space as a consequence of rapid
rotation and the creation of high temperature accretion regions.

The gauging of this event is still a matter of debate, depending
on the well-known accretion luminosity and the poorly known
size of the accretion region. Applying strictly the conservation
of angular momentum we calculated the evolution of six pro-
genitors towards six well-know Algols with accretion disks. We
followed the evolution of a progenitor into the presently defined
physical data of the binary components and the accretion disk
around the gainer. The temperature of the disk is determined by
accretion and by the radiation from the gainer’s surface. Fitting
this rather large number of observed data allowed us to deter-
mine the masses and initial periods of the progenitors precisely.
It has to be stated that different determinations of present mass,
radii and effective temperatures of Algols would lead to differ-
ent progenitors as found in this paper. Finally, we can summarize
our findings as follows:

We obtained a more accurate determination of initial param-
eters of observed Algol systems with a disk, by adding the disk
parameters in the comparison with the models.

Meridional circulation has to be included in the calculation
of tidal interaction, at least for stars with radiative atmospheres.

The luminosity of accretion disks is determined by accretion
upon and radiation from the gainer. However, the radiation lumi-
nosity is much larger than the accretion luminosity.

The luminosity of very large permanent disks exceeds the
luminosity of the gainer at the end of RLOF.

None of the initial systems has a period longer than 2.7 days
and our disk systems all have observed periods between 4.5 and
13 days. This reflects the fact that the systems evolved in a con-
servative or weakly liberal way.

Low values of the present mass ratio indicate that Algols that
underwent RLOF during hydrogen core burning of the donor are
at the end of their lives.

Algols that underwent their first RLOF during hydrogen
shell burning of the donor are in the middle of their RLOF lives
despite the low value of their mass ratio.
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Fig. 3. Evolution of the luminosity of the short-lived disk of β Lyr divided by the gainer’s luminosity as a function of relative disk time. From
bottom to top: accretion luminosities (13), (17), radiative luminosities (23) and (19) added.

Fig. 4. Evolution of the luminosity of the long-lived disk of TT Hya divided by the gainer’s luminosity as a function of relative disk time. From
bottom to top: accretion luminosities (13), (17), radiative luminosities (23) and (19) added.
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