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Massive Overcontact Binaries
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Motivation
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~25% of all massive stars are expected to go through a contact phase

Not much known about this phase

Potential Gravitational Wave progenitor

(Sana et al. 2012)
e —



Motivation: Chemically Homogeneous Evolution (CHE)

e First proposed for single stars

e High rotation rates cause
mixing

e Stars shrink instead of expand
as they evolve

(Mandel et al. 2016) 7
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e First proposed for single stars

e High rotation rates cause
mixing

e Stars shrink instead of expand

as they evolve

(Mandel et al. 2016)
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How do we look for CHE?

e Temperature increases

e Abundance changes
(i.e. enhancement of He, N
and depletion of C, O)

(Mandel et al. 2016)
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VFTS 352

e One of the most massive
overcontact binaries known
(28.6 + 28.6 Mo, p = 1124 days)

e Locatedinthe LMC

Goal: Test CHE in VFTS 352

e ObtainT_.
e Obtain abundances (He, C, N, O)

Method:

e Fit synthetic spectra (from
FASTWIND) to observed spectra

(Puls et al. 2005; llijic et al. 2004)

Part 1: Analysis of VFTS 352
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Normalize Flux

Normalize Flux

Our Dataset

e 8 epochs of Hubble COS Far-UV spectra (G130M and G160M)
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Normalize Flux

Part 1: Analysis of VFTS 352
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Optical Disentangled Spectra
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11 Parameter fit

o Teff

e logg
e vsini

e (Microturbulence)

Mass loss rate

Beta

inf

Abundances: He, C, N, O, Si (P)
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Normalized Flux
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Comparison with Evolutionary Tracks on HRD
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(Evolutionary Models from Brott et al. 2011)
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Results and Conclusions

e There is some evidence for mixing
o Stars are hotter than expected
o Carbon and Oxygen show possible depletion
o HOWEVER, no Nitrogen enrichment

e Most likely a result of binary interactions, not of internal mixing.
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ABSTRACT

The massive O4.5 V + 05.5 V binary VFTS 352 in the Tarantula nebula is one of the shortest-period and
most massive overcontact binaries known. Recent theoretical studies indicate that some of these systems could
ultimately lead to the formation of gravitational waves via black hole binary mergers through the chemically
homogeneous evolution pathway. By analyzing ultraviolet-optical phase-resolved spectroscopic data, we aim
to constrain atmospheric and wind properties that could be later used to confront theoretical predictions from
binary evolution. In particular, surface abundances are powerful diagnostics of the evolutionary status, mass
transfer and the internal mixing processes. From a set of 32 VLT/FLAMES visual and 8 HST/COS ultraviolet
spectra, we used spectral disentangling to separate the primary and secondary components. Using a genetic
algorithm wrapped around the NLTE model atmosphere and spectral synthesis code rFasTwiND, we perform an
1 I-parameter optimization to derive the atmospheric and wind parameters of both components, including the
surface abundances of He, C, N, O and Si. We find that both components are hotter than expected compared to
single-star evolutionary models indicating that additional mixing processes may be at play. However the derived
chemical abundances do not show significant indications of mixing when adopting baseline values typical for
the system environment.
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Results and Conclusions

e There is some evidence for mixing
o Stars are hotter than expected
o Carbon and Oxygen show possible depletion
o HOWEVER, no Nitrogen enrichment

e Most likely a result of binary interactions, not of internal mixing.

e The non-spherical nature of the system can also cause uncertainties
o 2-D Surface Patch Model could help this
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How can we solve this?
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How can we solve this?

+ FASTWIND

PHOEBE
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Phoebe 2
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e Wilson-Devinney-like code used to model eclipsing binary light curves and
radial velocity curves

e From the binary solution, a 3D mesh model is constructed

e Using the 3D mesh, a light curve (or RV curve) is constructed

(Prsa et al. 2016)



Physics already included in Phoebe:

e Surface deformation

e Surface meshing

e Limb darkening

e Gravity brightening

e Reflection effect

e Radial velocity across the surface

Triangulated meshing
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e Volume conservation for eccentric orbits

(Prsa et al. 2016)
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Phoebe Spectra by Phase
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Other Applications of this technique

e Rapidly-rotating systems

e Heartbeat stars

e Semi-detached binaries

e Binaries
o  Struve Sahade effect
o Rossiter-McLaughlin effect

e Triples

e Anything that Phoebe can model!
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Benefits and Drawbacks

Pros:

+ All of the physics included in Phoebe comes for free
+ 3D shape of systems are accounted for
+ Both components can be fit simultaneously (No disentangling needed!!)

Cons:

- Wind treatment needs improvement
- Constrained by the pre-computed FASTWIND grid (however a new grid can be
provided by the user if they wish)
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Summary

Spectroscopic Analysis of VFTS 352

e Temperatures suggest CHE,
however abundances do not

e Likely a result of binary
interactions
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Phoebe Spectral Modeling

3D treatment of massive
overcontact binaries with more
physics than any previous method

Can be applied to a variety of
spherical and non-spherical

objects

All components fit simultaneously
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