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Motivation

● Roughly peanut shaped

● ~25% of all massive stars are expected to go through a contact phase

● Not much known about this phase 

● Potential Gravitational Wave progenitor
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(Sana et al. 2012)

Part 1: Analysis of VFTS 352



● First proposed for single stars

● High rotation rates cause 
mixing

● Stars shrink instead of expand 
as they evolve

(Mandel et al. 2016) 7
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Motivation: Chemically Homogeneous Evolution (CHE)



● First proposed for single stars

● High rotation rates cause 
mixing

● Stars shrink instead of expand 
as they evolve
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Part 1: Analysis of VFTS 352

How do we look for CHE?

● Temperature increases

● Abundance changes 
(i.e. enhancement of He, N 
and depletion of C, O)



VFTS 352

● One of the most massive 
overcontact binaries known
(28.6 + 28.6 M☉, p = 1.124 days)

● Located in the LMC

Goal: Test CHE in VFTS 352

● Obtain Teff 
● Obtain abundances (He, C, N, O)

Method:

● Fit synthetic spectra (from 
FASTWIND) to observed spectra

10(Puls et al. 2005; Ilijic et al. 2004)

Part 1: Analysis of VFTS 352



Our Dataset

● 8 epochs of Hubble COS Far-UV spectra (G130M and G160M)

● 32 epochs of FLAMES visual spectra
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Primary
Secondary



13

Part 1: Analysis of VFTS 352

Primary
Secondary

Optical Disentangled Spectra



11 Parameter fit

● Teff 

● log g

● v sin i 

● (Microturbulence)
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Part 1: Analysis of VFTS 352

● Mass loss rate 

● Beta 

● Vinf 

● Abundances: He, C, N, O, Si (P)



Best fit models 
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Part 1: Analysis of VFTS 352

Primary
Secondary

Family of Solutions
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Part 1: Analysis of VFTS 352

(Evolutionary Models from Brott et al. 2011)

Comparison with Evolutionary Tracks on HRD



17

Primary Component

Part 1: Analysis of VFTS 352

Secondary Component



Results and Conclusions 

● There is some evidence for mixing
○ Stars are hotter than expected 
○ Carbon and Oxygen show possible depletion
○ HOWEVER, no Nitrogen enrichment

● Most likely a result of binary interactions, not of internal mixing.
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Results and Conclusions 

● There is some evidence for mixing
○ Stars are hotter than expected 
○ Carbon and Oxygen show possible depletion
○ HOWEVER, no Nitrogen enrichment

● Most likely a result of binary interactions, not of internal mixing.

● The non-spherical nature of the system can also cause uncertainties
○ 2-D Surface Patch Model could help this
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How can we solve this?
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+ FASTWIND

Part 2: Spectral Analysis with Phoebe and Fastwind



How can we solve this?
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+ FASTWIND

Part 2: Spectral Analysis with Phoebe and Fastwind



Phoebe 2

● Wilson-Devinney-like code used to model eclipsing binary light curves and 
radial velocity curves

● From the binary solution, a 3D mesh model is constructed

● Using the 3D mesh, a light curve (or RV curve) is constructed

23(Prša et al. 2016)

Part 2: Spectral Analysis with Phoebe and Fastwind



Physics already included in Phoebe:
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● Surface deformation

● Surface meshing

● Limb darkening

● Gravity brightening

● Reflection effect

● Radial velocity across the surface

● Volume conservation for eccentric orbits

Part 2: Spectral Analysis with Phoebe and Fastwind

(Prša et al. 2016)



PHOEBE 2 Model of VFTS 352
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Part 2: Spectral Analysis with Phoebe and Fastwind
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T = 39600 K
logg = 4.01 cm/s2

R = 7.64 R☉

T = 44253 K
logg = 4.27 cm/s2

R = 6.68 R
☉

T = 34453 K
logg = 3.75 cm/s2

R = 8.83 R
☉

Part 2: Spectral Analysis with Phoebe and Fastwind
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Part 2: Spectral Analysis with Phoebe and Fastwind

Phoebe Spectra by Phase

Observed Spectra
Phoebe Synthetic  Spectra



Other Applications of this technique

● Rapidly-rotating systems

● Heartbeat stars

● Semi-detached binaries

● Binaries
○ Struve Sahade effect
○ Rossiter-McLaughlin effect

● Triples

● Anything that Phoebe can model!
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Part 2: Spectral Analysis with Phoebe and Fastwind



Benefits and Drawbacks

Pros:

+ All of the physics included in Phoebe comes for free
+ 3D shape of systems are accounted for
+ Both components can be fit simultaneously (No disentangling needed!!!)

Cons:

- Wind treatment needs improvement
- Constrained by the pre-computed FASTWIND grid (however a new grid can be 

provided by the user if they wish)
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Part 2: Spectral Analysis with Phoebe and Fastwind



Summary

Spectroscopic Analysis of VFTS 352

● Temperatures suggest CHE, 
however abundances do not

● Likely a result of binary 
interactions
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Phoebe Spectral Modeling

● 3D treatment of massive 
overcontact binaries with more 
physics than any previous method

● Can be applied to a variety of 
spherical and non-spherical 
objects

● All components fit simultaneously


