Spin-orbit alignment in resolved debris disks

Olivier Absil University of Liège FNRS postdoctoral researcher

The Rossiter-McLaughlin effect

- Takes place during (planetary) transit
- Planet hides small fraction of one velocity component on photosphere
- Small bump moves through spectral line
- Creates RV anomaly

Gaudi & Winn 2007

RM detected for hot Jupiters

- First detection by Queloz et al. (2000)
 HD 209458b aligned
- 40 systems observed
 - 18 significantly misaligned
 - 9 on retrograde orbits
- Detection not easy
 - Significant error bars (~10°) on relative inclination

Possible explanations

- Disk-driven migration not possible
- Kozai mechanism
 - Requires distant 3rd body on inclined orbit (40° < i < 140°)
 - Secular oscillations of eccentricity and inclination for inner planet
 - Circularisation by tidal friction
- Planet-planet scattering
 - Instabilities in multiple (packed) planetary systems
 - Orbital crossing → high eccentricities / inclinations
 - Circularisation by tidal friction

Kozai or scattering?

- Strongly debated issue (Morton & Johnson 2011)
 - Need 2× more observed systems to conclude

Alternative scenarios

- Misalignment may date back to protoplanetary disk phase
- Early stellar encounter (Bate et al. 2010)
 - Stellar cluster \rightarrow chaotic environment
 - Interactions \rightarrow misalignment + truncation
 - Enough mass left for planets?
- Magnetosphere-disk interactions (Lai et al. 2011)
 - Magnetic protostar exerts warping/precessional torque on disk inner region
 - Disk resists warping \rightarrow back-reaction torque

How to discriminate?

- Use debris disks
 - 2nd generation dust created by small bodies
 - Equivalent to Kuiper belt
- Resolved image
 - Inclination / position angle easy to measure
 - Materialises the plane of planetary formation

Kalas et al. 2005

Need stellar orientation

- Inclination from $P_{rot} \times v \sin i / 2\pi R_*$ (Watson et al. 2011)
 - v sin i from high resolution spectroscopy
 - P_{rot} from photometry or Ca II lines (low precision)
 - R_{*} from spectra, interferometry, ...
 - Result: no misalignment in 8 systems (FGK stars)
 - BUT: final error bars generally $\ge 10^{\circ}$
- Position angle from spectro-interferometry
 - Only for rapidly rotating stars (A / early F)
 - Subject of this talk

PA from spectro-interferometry

- Requirements
 - Rapidly rotating star
 - Deep absorption line
 - Marginally resolved photosphere (~1 mas)
- Displacement of photocenter across the Br-γ line
 - Signature in fringe phase versus wavelength
 - − 2D phase → position angle

Fomalhaut with VLTI/AMBER

- AMBER
 - 3 × Auxiliary Telescopes
 - Baselines: ~100m
 - Medium spectral resolution (R=1500) in K band
- Fomalhaut
 - A4V star at 7.7 pc
 - v sin i = 93 km/s
 - Angular diam: θ = 2.2 mas
- Measure wavelengthdifferential phase
 - Deduce 2D differential astrometry

2D differential astrometry

- Clear signature inside Br-γ line
 - Precision: ~3 μas

Spin-orbit alignment

- Photosphere position angle: 155° ± 3°
 - But inclination not constrained (needs advanced model)
- Disk position angle: 156.0° ± 0.3°
- By-product: discriminate front side / back side
 - Assuming planet prograde and stellar spin not flipped

Backward scattering dominant?

- Possible only with big grains
 Similar to lunar phases
- Small grains ejected?
 - What about further collisions?

Future work

- 10 potential targets
 - Out of 25 resolved debris disks
- Zeta Leporis
 - Position angle retrieved while θ = 0.75 mas only
- Beta Pictoris
 - Star aligned with inner or outer disk?

