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OUTLINE

 Comparison between the observed features of a CME-driven

shock and the results of MHD simulations. The June 11, 1999 CME 

event is taken as a reference.

 2D Particle-in-Cell, visco-resistive, Lagrangian MHD simulation of a 

CME-like wave propagating through a cylindrical domain with 

realistic initial conditions.

 1D ideal Lagrangian MHD simulation of the proton-electron energy

decoupling along the shock front.
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STUDYING A CME-DRIVEN SHOCK

 Coronal Mass Ejections → massive, 

complex plasma structures often 

preceded by fast moving shocks

 Formation & propagation mechanism 

not completely understood

 Observations allow to retrieve 

upstream and downstream plasma 

parameters [Bemporad et al. (2014)]
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[Bemporad et al. (2011)]



SIMULATING A CME EVENT: FLIPMHD3D

Initial profiles [Vasquéz et al. (2003)]:

𝑛𝑒 = 108
77.1

ℎ31.4
+

0.954

ℎ8.3
+

0.55

ℎ4.63
[𝑐𝑚−3] 𝑇𝑒 = 8 ×

105 𝑎𝑒𝑞+1.0

𝑎𝑒𝑞+𝑏𝑒𝑞ℎ
𝛼𝑒𝑞+

1.0−𝑏𝑒𝑞

ℎ
𝛽𝑒𝑞

[𝐾]

ℎ 𝑅⊙ = ℎ𝑒𝑙𝑖𝑜𝑐𝑒𝑛𝑡𝑟𝑖𝑐 ℎ𝑒𝑖𝑔ℎ𝑡, 𝑎𝑒𝑞 = 0.1, 𝑏𝑒𝑞 = 0.33, 𝛼𝑒𝑞 = 0.55, 𝛽𝑒𝑞 = 6.6
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SIMULATING A CME EVENT: FLIPMHD3D

5/16[Bacchini et al. (2015), submitted]



RETRIEVING THE PRE-SHOCK PARAMETERS
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RETRIEVING THE PRE-SHOCK PARAMETERS

Proton-proton mean free path approximation:

𝛿𝑠ℎ = 𝑘𝜆𝑝 [𝑅⊙] [Eselevich & Eselevich (2011, 2012)]

𝜆𝑝 = 10−7
𝑇2

𝑛
[𝑅⊙] [Zel’dovich & Raizer (1966)]

𝑇 𝐾 = 𝑝𝑙𝑎𝑠𝑚𝑎 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑛 𝑐𝑚−3 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
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SHOCK PARAMETER DISTRIBUTIONS ALONG THE FRONT

8/16[Bacchini et al. (2015), submitted]



ALFVÉNIC MACH NUMBER RELATION VALIDATION

From the shock adiabatic equation [Mann et al. (1995)]:

For 𝜃𝐵𝑛 = 0, 𝑀𝐴∥ =
5𝛽𝑢𝑋

2 4−𝑋

For 𝜃𝐵𝑛 = 𝜋/2, 𝑀𝐴⊥
4 𝑋 + 𝛽𝑢 + 5 +𝑀𝐴,⊥

2 2𝑋 𝑋 − 5𝛽𝑢 − 4 + 5𝛽𝑢𝑋
2 = 0

𝑀𝐴∠ = 𝑀𝐴⊥ sin 𝜃𝐵𝑛
2
+ 𝑀𝐴∥ cos 𝜃𝐵𝑛

2
[Bemporad et al. (2014)]
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ALFVÉNIC MACH NUMBER RELATION VALIDATION
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[Bacchini et al. (2015), submitted]



SIMULATING PROTON-ELECTRON DECOUPLING
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 Electrons and protons are expected to 

behave differently when subjected to a 

shock transit [Manchester et al. (2012)]

 Electron temperature jump → adiabatic 

gas law; 

Protons temperature increase → shock 

compression + kinetic energy dissipation 

at the front;

 A 1D, two-temperature ideal MHD model 

is applied at three points along the shock
[Bemporad et al. (2014)]



TWO-TEMPERATURE MODEL
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Lagrangian 1D ideal MHD

Momentum: 𝜌
d𝐮

d𝑡
= −𝛻(𝑝 + 𝑞) +

𝐁⋅𝛻 𝐁

𝜇0
− 𝛻

𝐁2

2𝜇0

Induction: 𝜌
d

d𝑡

𝐁

𝜌
= 𝐁 ⋅ 𝛻 𝐮

Gauss’s law: 𝛻 ⋅ 𝐁 = 𝟎

+ Energy equation & closure equation (for each species)

Artificial

viscosity



TWO-TEMPERATURE MODEL
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Simple solar wind model

[van der Holst et al. (2014)]:

d𝑝𝑒
d𝑡

= −𝛾𝑝𝑒𝛻 ⋅ 𝐮

𝜌
d𝑒𝑝

d𝑡
= −(𝑝𝑝 + 𝑞)𝛻 ⋅ 𝐮

𝑝𝑝 = 𝛾 − 1 𝜌𝑒𝑝 , 𝛾 = 5/3

*NEW* Variable-𝛾 model:

𝜌
d𝑒𝑒
d𝑡

= − 𝑝𝑒 + 𝑞 𝛻 ⋅ 𝐮

𝜌
d𝑒𝑝

d𝑡
= −(𝑝𝑝 + 𝑞)𝛻 ⋅ 𝐮

𝑝𝑠 = 𝛾𝑠 − 1 𝜌𝑒𝑠

𝛾𝑠 from [Gosling (1999)]



TWO-TEMPERATURE MODEL: RESULTS

14/16[Bacchini et al. (2015), submitted]



TWO-TEMPERATURE MODEL: RESULTS
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𝑑

𝑑𝑡
ln
𝑝𝑒
𝑝𝑝

= −(𝛾𝑒 − 𝛾𝑝)𝛻 ⋅ 𝐮

At the shock front, 𝛻 ⋅ 𝐮 < 0

⇒
𝑝𝑒

𝑝𝑝
increases if 𝛾𝑒 > 𝛾𝑝

⇒
𝑝𝑒

𝑝𝑝
decreases if 𝛾𝑒 < 𝛾𝑝

[Bacchini et al. (2015), submitted]



CONCLUSIONS

 Comparisons between simulation results and observational data show good 

agreement on the spatial distribution of 𝑋, 𝑀𝐴 and 𝑑 along the shock front.

 As expected, the shock behaves as a parallel shock at the nose and as a 

perpendicular shock at the flanks. The semi-empirical expression for 
𝑀𝐴,∠ approximates the actual values of 𝑀𝐴 very well. The shock is supercritical 

at the nose, over a zone less and less wide as it propagates.

 The simple solar wind model reproduces the expected proton-electron 

energy decoupling very well; the variable-𝛾 model introduces some of the 

missing physics related to the additional electron heating due to secondary 

phenomena.
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