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SNOCK dNcC
event is tfaken as a referel

2D Particle-in-Cell, visco-resistive, Lagrangian MHD simulation of a
CME-like wave propagating through a cylindrical domain with
realistic inifial conditions.

1D ideal Lagrangian MHD simulation of the proton-electron energy
decoupling along the shock front.
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SIMULATIN
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SIMULATING A CME EVENT: FLIPMRD3D
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RETRIEVING THE PRE-SHOCK PARAMETERS
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RETRIEVING THE PRE-SHOCK PARAMETERS

Proton-proton mean free path approximation:
Osn = kA, [Rp] [Eselevich & Eselevich (2011, 2012)]
, =102 [Rg]  [Zel'dovich & Raizer (1966)]

n
T [K] = plasma temperature, n [cm™3] = particle density
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SHOCK PARAMETER DISTRIBUTIONS ALONG THE FRONT

Shock position Alfvénic Mach number
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For 65 =0,

\

For g, =m/2, Mg (X + By +5) +M; 2X(X — 58, —4) +58,X* =0

M, = \/(MAl sinBp )" + (My cos 6 )~ [Bemporad et al. (2014)]
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ALFVENIC MACH NUMBER RELATION VALIDATION

RS=1.8381,k=2.18 RS=2.1381,k=1.4




shock tro
Electron temperature jump — adiabatic
gas law;

Protons temperature increase — shock
compression + kinetic energy dissipation
at the fronf;

A 1D, two-temperature ideal MHD model

Is applied at three points along the shock X@A_)
[Bemporad et al. (2014)]



Induction: p% (%) =(B:-V)u

Gauss'slaw: V-B =0

+ Energy equation & closure equation (for each species)
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pp =0 —1Dpe,, y=5/3 v, from [Gosling (1999)]
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TWO-TEMPERATURE MODEL: RESULTS
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[Bacchini et al. (2015), submitted]



TWO-TEMPERATURE MODEL

d [ De
E<IHE> — _(Ve _Vp)V “u

At the shock front, V-u < 0

= Z—" increases if y, > y,
p

= g—e decreases if y, <y,
p

[Bacchini et al. (2015), submitted]

: RESULTS




CONCLUSIONS

=  Comparisons between simulation results and observational data show good
agreement on the spatial distribution of X, M, and d along the shock front.

=  As expected, the shock behaves as a parallel shock af the nose and as a
perpendicular shock at the flanks. The semi-empirical expression for
M, , approximates the actual values of M, very well. The shock is supercritical

at the nose, over a zone less and less wide as it propagates.

= The simple solar wind model reproduces the expected proton-eleciron
energy decoupling very well; the variable-y model infroduces some of the
missing physics related to the additional electron heating due to secondary
phenomena.
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