lapetus' ridge, the remnant of a global contraction event

Mikael Beuthe Royal Observatory of Belgium

Cassini 2007 flyby of lapetus NASA/JPL/Space Science Institute FNRS Contact Group, Astronomy & Astrophysics, May 25 2010

Mystery I: Brightness dichotomy

Leading side: dark Cassini 1705

Cassini flyby 2004

Trailing side: bright Cassini 1671

Cassini flyby 2007

Pictures: NASA/JPL/Space Science Institute

2009: Saturn's colossal ring

Mystery II: Anomalous flattening

c - a = 35 km (Earth: 21 km) ~T=16 h ?

Synchronous orbit T=79 days

Castillo-Rogez et al., Icarus 190 (2007) 179

Mystery III: Equatorial ridge on lapetus

Cassini flyby 2004

Cassini flyby 2007

Pictures: NASA/JPL/Space Science Institute

Modeling global tectonics

Global deformation of lithosphere axial pattern ?

	Lithospheric thickness	Deformation	Pattern
Old model	constant	despinning	wrong
My model	thinner at equator	contraction, expansion	right

Model: Thin elastic shell with variable thickness

Stress and faulting

http://www.see.leeds.ac.uk/structure/faults/stress/stress.htm

Lithosphere of constant thickness: despinning

Lithospheric stress

- E-W stress more compressive than N-S stress
- maximum compression at the equator
- maximum extension at the poles

Lithosphere thinner at equator: despinning

Lithospheric stress

- E-W stress still more compressive than N-S stress
- faulting pattern weakly affected

Lithosphere thinner at equator: contraction or expansion

- maximum compression at equator
- maximum extension at equator

Lithosphere thinner at equator: faulting patterns

Formation of lapetus' ridge

Scenarios:

- A. Contraction, despinning later $(T_0 \sim I6h)$
- B. Contraction during despinning $(T_0 \sim 16h)$:
 - E-W thrust faults if $\Delta R > 13$ km
- C. Expansion and despinning:
 - E-W joint \Rightarrow dike

Elastic buckling with variable thickness

Conclusions on lapetus' ridge

I. lithosphere thinner at equator + contraction/expansion 2. no despinning tectonics: initial period ~16h? 3. no elastic buckling: critical stress too high

Other planets

Mars: wrinkle ridges

Mercury: lobate scarps

References:

Beuthe M., 2008. Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets, Geophys. J. Int. 172, 817. Beuthe M., 2010. East-west faults due to planetary contraction, Icarus (in press).

Left: Hesperia Planum imaged by HRSC on Mars Express (ESA/DLR/FU Berlin) Right: MESSENGER, 2nd flyby (NASA/Johns Hopkins University Applied Physics Laboratory/Arizona State University/Carnegie Institution of Washington)

Acknowledgments

This work was financially supported by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office