Dynamics of exoplanetary systems, links to their « habitability »

19/05/15 FNRS Contact Group "Astronomie & Astrophysique" Astronomy day of the Royal Observatory of Belgium

> Emeline BOLMONT Université de Namur/ Naxys

> > Anne-Sophie Libert Jérémy Leconte Franck Selsis Sean N. Raymond

Dynamics of exoplanetary systems, links to their « habitability »

19/05/15 FNRS Contact Group "Astronomie & Astrophysique" Astronomy day of the Royal Observatory of Belgium

> Emeline BOLMONT Université de Namur/ Naxys

> > Anne-Sophie Libert Jérémy Leconte Franck Selsis Sean N. Raymond

~1900 exoplanets!

The holy grail...

The holy grail...

The holy grail...

Rocky planet...

The holy grail...

Rocky planet...

...around a Sun-like star...

The holy grail...

Rocky planet...

...with surface liquid water.

...around a Sun-like star...

« Habitable zone »

region around a star in which a planet with an atmosphere could potentially host surface liquid water

Climate

orbital distance

Climate

orbital distance

insolation

Climate

Brown dwarf

Planets around brown dwarfs

Tidal effects in multi-planet systems

Resonances in the Jupiter system

Planets around brown dwarfs

Tidal effects in multi-planet systems

Resonances in the Jupiter system

Tidal effect in Io → strong volcanism

Tidal heat flux is $\sim 3 \text{ W/m}^2$

Images from New Horizons showing volcano Tvashtar

Tidal effect in Io → strong volcanism

Tidal heat flux is $\sim 3 \text{ W/m}^2$

Images from New Horizons showing volcano Tvashtar

Tidal effect in Io → strong volcanism

Tidal heat flux is $\sim 3 \text{ W/m}^2 > \sim 40 \text{ x Earth's flux (radioactivity)}$

Images from New Horizons showing volcano Tvashtar

Planets around brown dwarfs

Tidal effects in multi-planet systems

Planets around brown dwarfs

Tidal effects in multi-planet systems

Non resonant system

Resonance 2:1

Resonance 2:1

Planets around brown dwarfs aquability?

Planets around brown dwarfs aquability?

- $(\Phi_{\star} + \Phi_{tides})_{avg} < 300 \text{ W/m}^2$, aquability

Planets around brown dwarfs aquability?

- $(\Phi_{\star} + \Phi_{tides})_{avg} < 300 \text{ W/m}^2$, aquability

- $(\Phi_{\star} + \Phi_{tides})_{avg} > 300 \text{ W/m}^2$, no aquability

Several planets resonances

Planets around brown dwarfs This is also relevant for...

Planets around brown dwarfs This is also relevant for...

Exomoons!

Planets around brown dwarfs This is also relevant for...

Kepler-186

Quintana et al. (2014) Bolmont et al. (2014)

Kepler-186

Quintana et al. (2014) Bolmont et al. (2014)

Kepler-186 Aquability of Kepler-186f?

Bolmont et al. (2014)

Kepler-186 Aquability of Kepler-186f?

Bolmont et al. (2014)

Kepler-186 Aquability of Kepler-186f?

Bolmont et al. (2014)

Climate

orbital distance

insolation

Climate

obliquity

 $\mathbf{\Sigma}$

Thank you!