

Radiative Transfer Model of Jupiter's Atmosphere

Miriam Estefanía Cisneros González

Supervisors:

Séverine Robert Planetary Atmospheres Department, Royal Belgian Institute for Space Aeronomy

Clément Lauzin Institute of Condensed Matter and Nanoscience Department, UCLouvain

May 23rd 2024 – 22nd Meeting of the Astronomie & Astrophysique contact group

Jupiter, a Gas Giant Planet

Jupiter's Atmosphere

Main Consequences of the Circulation Mechanisms

- Clouds are not located at the altitude explained by the condensation theory
- Volatiles are not well mixed below the clouds
- The disequilibrium species do not always follow the expected patterns

Kr

CO

Xe

Disequilibrium species

GeH₄

AsH₂

From theory:

CH₄ condensates @ 190K + 40atm

4 L. Fletcher, 2021, Exploration of the Gas Giants, IAS – CSIC – Severo Ochoa school on (exo)planetary systems

UCLouvain

7.6 ppb

0.75 ppb

0.76 ppb

0.6 ppb

0.2 ppb

Mc Grath, et al., Cambridge

University Press, Ed. 2004

Exogenic Contributions

In preparation to the JUICE mission

- Launch on April 2023 Arrival in July 2031
- Detailed observations to characterize Jupiter's atmosphere
- 10 instruments on board including hyperspectral cameras
 - VIS-NIR range has the remarkable potential for characterizing aerosols

What do we need?

- Observational Data
- In-situ Measurements
- Radiative Transfer Models

UCLouvain

Geometry of Observation

From where the light is coming and from where we measure it

UCLouvain

A

Jupiter Properties

* Not at scale

Main Physical Parameters of Jupiter		
Mean Radius	69911 km	
Mean Distance from the Sun	$5.2\mathrm{AU}$	
Mass	$1.8982 \mathrm{x} 10^{27} \mathrm{kg}$	
Equatorial gravity	24.79 m/s^2	
Bond Albedo	0.343	
Molar Mass of Dry Air	2.3047 g/mol	

Bagenal et al., Cambridge University Press, 2004

8

UCLouvain

A

UCLouvain

9

H.

Radiative Transfer Model

Main Spectral Contributions

UCLouvain

Jupiter's VIS-NIR spectrum

Radiative Transfer Model of Jupiter's atmosphere

Rayleigh Scattering

Scattering by particles <u>much smaller</u> than the wavelength of radiation

UCLouvain

A

He

Mie Scattering

Scattering by particles <u>much smaller</u> than the wavelength of radiation

UCLouvain

A

Radiative Transfer Model of Jupiter's Atmosphere

12

The Crème Brulee model

From Baines et al., 2019

Chromophores

The responsible for coloration of clouds as result of vertical motions that lift material to the troposphere where photochemical reactions can occur

UCLouvain

6

Radiative Transfer Model of Jupiter's Atmosphere

Observational data from Cassini/VIMS

Performances	VIS channel	IR channel
Spectral range	0.35-1.05µm	o.85-5.1µm
Spectral resolution	1.46nm	16.6nm
Signal to Noise Ratio	100	100

Observation Geometry		
Distance from Jupiter	28x10 ⁶ km	
Phase angle (nadir)	11.4°	

Radiative Transfer Model of Jupiter's Atmosphere

Comparison against observational data

UCLouvain

A

Radiative Transfer Model of Jupiter's Atmosphere

16

Final Results and Conclusions

- The radiative transfer model of Jupiter's atmosphere in ASIMUT-ALVL was completed with the different spectral contributions at the VIS-NIR wavelength:
 - CH_4 and NH_3

•

٠

- Rayleigh and Mie scattering
- CIA due to H_2 - H_2
- The model was successfully validated:
 - Against KOPRA
 - Against Cassini/VIMS data
- The developed Radiative Transfer model of Jupiter's atmosphere can be used to perform simulations of the Jovian atmosphere, as observed by different instruments
 - Especially MAJIS on board JUICE
- Our RT code will be used to assess the capabilities of the VIS-NIR spectrograph on board of the next mission to the Jovian system JUICE, supporting the scientific activities of the MAJIS Team

UCLouvain

6

 \mathbf{L}'

Thank you for your attention

Miriam Estefanía Cisneros González

miriam.cisneros@aeronomie.be

May 23rd 2024 – 22nd Meeting of the Astronomie & Astrophysique contact group