Françoise Combes On behalf of Euclid Consortium

Science with EUCLID

30 Avril 2014

Kowalski et al 2008

P

wo~-1

wa~0

Cosmology, Dark energy

Concordance model, between CMB, Supernovae Ia, Large-scale structure (weak lensing, BAO..)

$$= w \rho$$
 $w(a) = w0 + wa (1-a)$

Main questions in cosmology

Matter in the Universe Dark matter/visible matter vs z

Dark energy: Is it varying with time?

How is the Universe re-ionized? End of the dark age: cosmic dawn, EoR

How do baryons assemble into the large-scale structures? Galaxy formation and evolution (mergers, cold accretion) Star formation history, quenching Environment: groups and galaxy clusters

Transition between DM and DE

The DE was not significative until very recently, At z ~ 1 or less

The transition is very close and we are able to see it in optical and near infrared

Translation into Main Parameters

1-What is dark energy: w P= w ρ Equation of state and nature of DE, through expansion and growth rates, 5 tools: Weak Lensing, BAO, RSD, Clusters, ISW

2-Gravity beyond Einstein: γ

Testing modified gravity, by measuring growth rate exponent **y**

3-The nature of dark matter, m_v Testing the CDM theory, and measuring neutrino mass

4- The seeds of cosmic structures Improve by a factor 20, n= spectral index, σ_8 =amplitude of power spectrum, f_{NL} = non-gaussiantities

What do we know with CMB

Planck Large Scales -- Not enough power at low-*l*

 Ω b, Ωc, Peak position → flatness - Amplitude σ 8 (at 8Mpc/⁶h)

CMB anisotropies

Small scales with ACT Atacama Cosmology Tel (Das et al 2013)

and South Pole Telescope SPT (Story et al 2012)

No detection of f_{nl} (non Gaussianity)

Slope of power-spectrum, ns, departure from scale-invariant $ns = 0.960 \pm 0.0070 \Rightarrow$ inflation

 $z(reion) = 11.1 \pm 1.1$ optical depth $\tau = 0.091 + 0.01$

Mass and number of neutrinos

Planck coll (2013) Paper XVI Neutrino mass constraint from power-spectrum (free-streaming) N_{eff} could be higher due to lepton asymmetry or the existence of a sterile neutrino With Euclid $\rightarrow \sigma (M_v) = 0.03 \text{ eV}, \sigma(N_{eff}) = 0.02$ 8

Recent BAO spectro-z data

10

BAO in the Ly α forest at z=2.3

Delubac et al 2014

Red data points compared to the Mock quasar simulations (grey) rd Sound horizon at the drag epoch D_A angular dist, $D_H = c /H$ Tension with Planck at 2.5 σ 137 000 BOSS quasars 2.1 < z < 3.5Blue Ly α autocorrelation Red: Quasar-Ly α cross-correl (Font-Ribera et al 2013) Black: combined

RSD Redshift space distortions

Distortions due to peculiar velocities on the line of sight

the line of sight (fingers of god!) Kaiser effect in clusters Systematic infall More than random allows to determine $\beta = \Omega_m^{0.6}/b$ bias $\delta_{galaxies} = b (\delta_{mass})$ bias $\delta_{\text{galaxies}} = b (\delta_{\text{mass}})$ and σ_{gal}

12

Status of RSD measures

Various galaxy surveys VIPERS, de la Torre et al 2013

Thick line: GR gravity

Dahed or dotted lines Modified gravity DGP (Dvali et al 2010 f(R) models, etc..

Tension between Planck, Cepheids, BAO ...

BAO at 68 and 95% confidence level (blue) Ho (Cepheids) = 74km/s/Mpc, while Planck favors 67 km/s/Mpc

Delubac et al 2014

Independent cosmology probes

Hubble constant measured through cosmic distance ladder 73.8 ± 2.4 km/s/Mpc (Riess et al 2011) 3% precision →Tension with Planck = 67.3 ± 2.5 km/s/Mpc

600 Cepheids in NIR, including hosts of SNIa, with WFC3 on HST Also host NGC 4258 (Dist known with H_2O masers)

Type Ia supernova SNLS (Conley et al 2011, Sullivan et al 2011)
5-yr survey: 500 new SNIa spectra and light-curves 0.2 < z < 1.0</p>
Imaging with CFHT-Megacam, Spectra with 8_10 m Keck-VLT

Accelerating universe from SNIa

2003-2008 SNLS survey, French-Canadian collaboration

Sullivan et al 2011 Assuming flat universe

Conley et al 2011

CMB Lensing tool

Measure of the curvature Constraint Amplitude $\sigma 8$

Correlation with LSS along the line of sight

 ~ 90

2.90

CMB polarisation: E-mode and B-mode

Planck: E-mode, stack of 10⁴ hot and cold spots

50

0 Right ascension [deg.] -50

Comparison with previous data

Detection at the level of r=0.2 Ratio tensor/scalar, signature of gravitational wave in inflation

Higher than the upper limit from Planck

SLACS (~2010 - HST)

	0				1				
SDS5 J1420+6010	5855.03324-09.39	5865 J#105+5208	S2565 J1029 +0420	5855 21143-0144	5055 .0855+0911	SEES 20841+3024	GBS25 J004440113	5255 21432+6317	SDES J1451-0238
	1			۱	10		5	1	
3055 30912+0039	5895 21204+0358	5655 24153+4612	5055 J2341+0090	\$8\$\$ J1403+0095	\$855.0636+0913	5055 21003+4230	9095 20037-0948	5055 21432+4321	\$055.00738+3635
() () () () () () () () () () () () () (() 100 Janiero	1045 J1102+1081					1000 H200H0022	555.0250.0525	
۷	۱	•		۲					
5052 2056+5200	5893 -0822+2937	15255 74621-507	5055 /1630+#S/C	5855-1-112+0825	5855 10252+0009	5055 71029 +14122	5050 (1430+4105	5255 24404-0000	5035 (0189+1508
A PROPERTY OF THE PART OF	20082 21 2017 2129	Contraction of the second second	ALL STATE AND A STATE	BARRY BARRY CONTRACT		1005 21925 1422	10015 2000,011 11 10		

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

A. Bolton (U. Howai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakos (JPL/Caltech), S. Burles (MIT)

include and the first the first state and hearth include the second state of the secon

Will become an industry

Substructure study; high-z normal galaxies... Dark matter studies
→ Similar number per unit surface with SKA 100 000

ISW Integrated Sachs-Wolf

Energy loss by CMB photons while crossing evolving over-densities

Amplitude of the effect: information on the amount of DE also growth of structures, and modifications of GR

Correlation CMB-LSS (NVSS, SDSS)

Detected at 2.5σ with Planck Stacking 50 voids, 50 super-clusters

 $\ddot{\delta}+2H(t)\dot{\delta}=4\pi G\big<\rho\big>\delta$

Growth rate $\gamma = d\log(\delta) / d\log(a)$ Growth produces peculiar motions \rightarrow RSD

The growth-rate will be measured through1- Weak Lensing (WL) Tomography2- Clustering redshift-space distortions (RSD)

Euclid redbook, predictions

Majerotto et al 2012

26

Exploration of DE models with Euclid (redshifts only no WL data)

EUCLID Legacy

Wide survey 15 000 deg² Deep survey 40 deg² (+2mag)

12 billion sources (3σ)

50 million redshifts

A reservoir of targets for JWST,GAIA, ELT ALMA, Subaru, VLT, etc

Objects	Euclid	Before Euclid	
Galaxies at 1 <z<3 with<br="">precise mass measurement</z<3>	~2x10 ⁸	~5x10 ⁶	
Massive galaxies (1 <z<3))< th=""><th>Few hundreds</th><th colspan="2">Few tenss</th></z<3))<>	Few hundreds	Few tenss	
Hα Emitters with metal abundance measurements at z~2-3	~4x10 ⁷ /10 ⁴	~10 ⁴ /~10 ² ?	
Galaxies in clusters of galaxies at z>1	~2x10 ⁴	~10 ³ ?	
Active Galactic Nuclei galaxies (0.7 <z<2)< th=""><th>~104</th><th><10³</th></z<2)<>	~104	<10 ³	
Dwarf galaxies	~10 ⁵		
T _{eff} ∼400K Y dwarfs	~few 10 ²	<10	
Lensing galaxies with arc and rings	~300,000	~10-100	
Quasars at z > 8	~30	None	

Comparison with other surveys

29

Other domains: Galaxy evolution

The SDSS lesson

Out of 834 "official" SDSS journal papers:

Area	# papers	Percentage	1106
Cosmology	93	11.2%	7%
Supernovae	62	7.4%	81%
Legacy	679	81.4%	

→ Most papers could come from outside the Core Science

Main issues, synergies: JWST, ELT, SKA

Galaxy formation and evolution, physics and dynamics Surveys of galaxies at high and intermediate redshifts Mass assembly and star formation, mergers, cold accretion Quenching: supernovae and AGN feedback

Epoch of reionization

Early galaxies and black holes z=10-6 Absorption in front of QSO, GRB IGM

AGN and super-massive BH

Symbiotic growth with galaxies Physics of accretion

Are galaxies at z=7-10 able to re-ionize?

Galaxy formation and evolution

How galaxies assemble their mass? How much mass assembled in mergers? How much through gas accretion and secular evolution?

Star formation modes; main sequence, Starburst, mergers?

Modes of Quenching SF and AGN feedback

How the Hubble sequence sets in?

Galaxies today

In the first half of the Universe age

When star formation declines, the Hubble sequence sets in

Kassin + 2013

Fraction of disks which have settled i.e. $V/\sigma > 3$

The main questions

When does the Hubble sequence turn on?
→ More perturbed systems at high redshift
Disks appear thick, or dispersion dominated
Clumpy galaxies? Or transient stages after mergers?

→ The Elliptical galaxies appears surprisingly early Downsizing? Anto-hierarchical

→ When and where most of the stars formed?

→ Mass assembly: how and when?

→ Environment effects

→AGN and bulge growths

Euclid: mission implementation

Thales Alenia Space begins construction in 2013 Payload Module: Astrium Airbus Defense and Space

Euclid Concept

- ESA-led mission
- Selected in Oct. 2011 Fully funded
- Phase B2 close to completion
- Telescope
 - 1.2m aperture primary
 - 3 mirror anastigmat
- Overall Mass ~2020 kg
- Power 1710 W
- Cost: ~ 850 Meuros
- Instrument Two channels
 - Wide field instrument, VIS: 36 e2v 4kx4k CCDs
 - 576 M pixels, 0.11 arcsec/pix, 0.53 deg² FoV
 - Photom.+spectrom.: 16 H2RG HgCdTe detectors;
 - 64 Mpixels, 0.30 arcsec/pix, 0.53 deg² FoV (=VIS)
 - Grism slitless spectro
- Downlink Rate X/X + K-band to Ground Station 55 Mbits/s. 850 Gbit/day to transfer 4hr/day.
- L2 orbit
- Launch Vehicle Soyuz-Fregat
- Launch date 2020
- 6.25 years mission+additional surveys (exopl, SN)
- Main surveys: 15,000 deg²+40 deg² 2 mag. deeper
- Science drivers: DE

EUCLID mission: launch in 2020

Photo-z: Ground based Photometry								
and Spectroscopy	SURVEYS In ~6 years							
	Area (deg2)		Description					
Wide Survey	e Survey 15,000 d e		Step and stare with 4 dither pointings per step.					
Deep Survey	40 dea ²		In at least 2 patches of $> 10 \text{ deg}^2$					
		2 magnitudes deeper than wide survey						
PAYLOAD								
Telescope	escope 1.2 m Korsch, 3 mirror anastigmat, f=24.5 m			m				
Instrument	VIS	NISP						
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$						
Capability	Visual Imaging	NIR	Imaging Photom	etry	NIR Spectroscopy			
	0.0							
Wavelength range	550– 900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm			
		1146nm),	nm)	2000nm)				
Sensitivity	itivity 24.5 mag		24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1			
-	10σ extended source		5σ point	5σ point	3.5σ unresolved line			
			source	source	flux			
	Shapes + Photo-z of <u>n</u> = 1.5 x10 ⁹ galaxies			z of n=5x10 ⁷ galaxies				

Possibility other surveys: SN and/or μ -lens surveys, Milky Way ?

Ref: Euclid RB Laureijs et al arXiv:1110.3193

EUCLID: scientific instruments, VIS, NISP

- Stabilisation: Pointing error along the x,y axes= 25mas over a period 700 s.
- FoV: Common visible and NIR Fov = 0.54 deg^2

Simulation with VIS instrument

SDSS @ z=0.1 Euclid @ z=0.1 Euclid @ z=0.7

Messier 51 galaxy at $z\sim0.1$ and 0.7:

Euclid will get the resolution of Sloan Digital Sky Survey but at z=1 instead of z=0.05. Euclid will be 3 magnitudes deeper \rightarrow Euclid Legacy = Super-Sloan Survey

Euclid simulation VIS+NISP

YJH image z~0.3 cluster of galaxies

Ground base data for photo-z

• South

o DES data deep enough in g,r,i,z . Suits Euclid needso Part of south with LSST?

• North:

o MegaCam-RED at CFHT + WHT (WEAVE survey) o HSC/Subaru o LSST south-north?

Ground spectroscopy in synergy

HI spectroscopy will provide spectro-z catalogs for Euclid Ultimately 1 billion HI spectro-z (SKA2) With SKA-1 ~ 10% of SKA2

MOONS is ideal to provide the control sample for Euclid Euclid is ideal to provide deep near-IR photometry for MOONS

In addition to the ground photo-z Survey, with CFHT in the North DES, LSST in the South

E-ELT: very small FOV Will make follow-up of SKA and Euclid sources, with high resolution Complementary in science goals

Data release: ground based + Euclid

Summary

The Euclid mission is now in implementation phase
Euclid = 5 cosmological probes: WL, RSD, BAO, CL, ISW with 2 independent methods: geometry and growth rate
Europe is leading one of the most fascinating and challenging question of modern physics and cosmology

•Euclid Legacy = 12 billion sources, 50 million redshifts

A mine of images and spectra for the community for several decades;

–Synergy with LSST, e-ROSITA, SKA

-A reservoir of targets for JWST, GAIA, VLT, E-ELT, TMT, ALMA, etc..