ASTEROSPHERES

Bow shocks, bow waves and dust waves around stars

Nick Cox (KU Leuven)

with important contributions from Allard Jan van Marle, Leen Decin, Andreas Mayer, Bram Ochsendorf

Outline

- •) Asterospheres: The stellar wind ISM interaction region
- Hot stars
- •) Cool stars
- •) Conclusions and outlook

Asterospheres – bow shocks / bow waves

Basic idea: Expelled wind (gas and mass loss) interacts and sweeps up the surrounding interstellar medium. i.e. Wind-ISM interaction

bow shock: where v_{ISM} goes from supersonic to subsonic values asteropause: where $P_{ISM} = P_{CMS}$ [P=pressure] \rightarrow inner (CSM) & outer (ISM) astrosheath termination shock: place where v_{wind} goes from supersonic to subsonic values

Motivation for studying asterospheres

- Asterospheres can be used as <u>proxies of the local ambient medium</u> (i.e. density, temperature, magnetic field).
- Asterospheres can be used to identify runaways / uncover stellar motion.
- Asterospheres can provide insight on physics of <u>dust grain-gas coupling</u> and provide inside in <u>dust processing</u> in transition from CSE to ISM.
- Asterospheres offer <u>protection</u> to (proto-)planetary systems (i.e. similar to the heliosphere protecting the solar system).

Global size scale of asterospheres

Stand-off distance – ram pressure balance between stellar wind and ISM

$$R_0 = \sqrt{\frac{\dot{M} v_{wind}}{4 \pi \rho_{ISM} (c_{ISM}^2 + v_{star}^2)}}$$

Wilkin 1996, Weaver 1977

Projection of 3D 'wilkinoid' bow shock shape.

	Old cool star	Young hot star	G star (Sun)
V _{wind} (km/s)	10-30	500-2500	400 - 700
M (M _o /yr)	10 ⁻⁷ - 10 ⁻⁵	10 ⁻⁷ - 10 ⁻⁵	10 ⁻¹⁵ 10 ⁻¹³
V _{star} (km/s)	30	30	15
n(H) _{ISM} (cm ⁻³)	1	1	0.01
R ₀ (pc)	~ 0.1 - 1	~ 0.5 - 10	~0.001 (200 AU)
R_0 (arcmin)	~ 2 – 30 (@100pc)	~ 1.2 - 30 (@1kpc)	~0.2 (@10pc) 1 pc ~ 2 10⁵ AU

- 홍화 영화 물건 방법 그는 것 모 것 같은 것은

Note: Asterospheres are dynamical structures responding to changes in stellar parameters.

Radiative vs adiabatic shocks

 $v_*/v_{wind} \ll 1$

 $v_*/v_{wind} \gg 1$

Width interaction region depends on cooling efficiency and Mach of interacting flows. Efficient (radiative) cooling \rightarrow region narrows, higher gas density, \uparrow with M². Width scales as ~ R₀ / M² (Blondin & Koerwer 1998).

Gas and dust in asterospheres of hot stars – pre-*Herschel* –

Previously infrared emission associated with hot luminous stars (ex. α Cam, ζ Oph, τ Cma) as well as the RSG α Ori

Van Buren & McCray 1998, Van Buren et al. 1995, Noriega-Crespo et al. 1997 New WISE survey of bow shocks (10-15%) runaway stars presented in Peri+2011 IRAS detected 31 bow shocks and 27 bubbles/resolved emission out of 188 runaways.

Dust & gas in asterospheres of cool, old stars Betelgeuse – IRAS 60mu – pre-*Herschel* –

CW Leo – GALEX FUV

Sahai & Chronopoulos 2010

Herschel far-infrared survey of AGB/RSG

Mass-loss of Evolved StarS (Groenewegen et al. 2011)

IR-imaging 70 & 160 um: 32 O-rich AGB/RSG, 9 S-stars, 37 C-stars

Mass loss rate: $10^{-4} - 10^{-8} \text{ M}_{o}/\text{yr}$, slow winds: $v_w = 5-20 \text{ km/s}$

Туре	Ν	N (d < 500 pc)
Fermata	24	22
Eye	7	7
Ring	15	13
Irregular	7	6
Point source	28 (35%)	13 (20%)
Total	81	61

Herschel observations of dusty asterospheres

Runaway O supergiant

Red super giant

Context is important!

A dust wave in IC434 HII region

Orion Image Credit: ESA/Herschel/PACS, SPIRE & Herschel Gould Belt Survey Key Programme

Composite image credit: N.L.J. Cox (KU Leuven)

(Ochsendorf+2014)

Betelgeuse

 $v_*/v_w > 1$ \rightarrow unstable bow shock

RT instabilities may fragment bow shock in direction of motion.

Magnetic field may suppress some modes but accentuate others, leading to 'RT stripes' (Dgani & Soker 1998).

Arcs separated by 30" at distance of 330" yields (Eq 4 in Dgani 1998). Alven speed of pre-shock ISM of ~4 km/s.

For $n_{ISM} = 4 \text{ cm}^{-3} \rightarrow B = 3 \mu G$.

Betelgeuse – dust temperature

Smooth continuous outflow:

Silicate heated by the stellar radiation has temperature ~45 –60K at distance of 280–530" from the central star.

Arcs:

$$T_{dust} \sim 80-90 \text{ K}, \beta \sim 1$$

 $M_{d^+g} \sim 10^{-3} M_{sun}$

Bar: T_{dust} ~ 60-70 K, β~1 M_{d+g} ~ 10⁻³ M_{sun}

Decin+2012

Eyes in the Sky

Van Marle, Cox & Decin (2014)

Mdot = $10^{-7} M_{sun}/yr$, v_{wind} = 10 km/s, B = 10 μ G, n_{ISM} = 2 cm⁻³

Main conclusions & outlook

- Herschel demonstrated the <u>ubiquitous occurrence of dusty asterospheres around</u> <u>AGB stars</u> (including resolving KH and RT <u>instabilities</u>!)
 - \rightarrow Independent tools to <u>estimate stellar and/or interstellar parameters</u>.
 - \rightarrow Shape affected by <u>binarity</u> and <u>magnetic field</u>.
 - \rightarrow Shells related to <u>circumstellar chemistry</u> (thermal pulse history).
 - \rightarrow ISM dust mass ~1 to 25 % for evolved stars and ~100% for O/B stars.
- AGB/RSG asterospheres primarily detected via their dust (exception: CW Leo). Hot massive star asterospheres more energetic and (sometimes) visible in H α .
- Multi-wavelength imaging AND spectroscopy of larger sample of asterospheres to <u>understand bow shock physics, interplay gas and dust, and origin of varying</u> <u>morphologies.</u>
- Work in progress: Introducing dust grains (size distribution,formation/destruction), chemistry, and magnetic fields in the hydrodynamical simulations.

Asterospheres around later type (post-AGB/proto-PNe) or solar-type stars?