Cassini States of the Galilean satellites

Alexis Coyette, Rose-Marie Baland & Tim Van Hoolst

FNRS Contact Group – May 23, 2023

Cassini States - Definition

Cassini's laws were established for the Moon by Cassini (1693):

- 1. a 1:1 spin-orbit resonance
- 2. precession rates of the rotation axis and of the normal to the orbit are nearly equal
- 3. The spin axis, the normal to the orbit and the normal to the inertial plane remain coplanar with a constant obliquity angle θ .

Cassini States - Biaxial solid case		Ganymede	Callisto
		0.23763	0.62358
	$ ilde{ heta}_{ ext{II}}^{ ext{Cl}}$ (°)	-76.54326	-56.08854
	$ ilde{ heta}_{ ext{III}}^{ ext{Cl}}$ (°)	180.14823	180.16209
For a biaxial satellite (Colombo, 1966)	$ ilde{ heta}_{ ext{IV}}^{ ext{Cl}}$ (°)	76.90842	56.60315

 $\alpha \sin[2(\tilde{\theta} - i)] + 2\dot{\Omega}\sin\tilde{\theta} = 0,$

where $\alpha = \frac{3}{2} \frac{C - \overline{A}}{C} n$ is the Free Precession frequency.

Cassini States -	Triaxia	 solid	case

	Ganymede	Callisto
$ ilde{ heta}_{ m I}^{ m Cl,tri}$ (°)	0.21349	0.40312
$ ilde{ heta}_{ ext{II}}^{ ext{Cl,tri}}$ (°)	-92.82688	-77.72611
$ ilde{ heta}_{ ext{III}}^{ ext{Cl,tri}}$ (°)	180.14823	180.16209
$ ilde{ heta}_{ ext{IV}}^{ ext{Cl,tri}}$ (°)	93.19646	78.21502

For a triaxial satellite (Peale 1969, Ward 1975, Henrard & Murigande, 1987, Henrard & Schwanen, 2004):

$$\frac{3}{4}\frac{B-A}{C}n\sin(\tilde{\theta}-i) + \frac{3}{8}n\frac{(4C-3A-B)}{C}\sin[2(\tilde{\theta}-i)] + 2\dot{\Omega}\sin\tilde{\theta} = 0$$

Ganymede

Cassini States - Stability

• Close to $\pm \frac{\pi}{2}$, CS II and CSIV are not stable (Henrard & Schwanen, 2004) Ganymede

Cassini States - Stability

Cassini States - A dynamical model

- Classical equations are obtained using an averaged gravitational torque
 - Nutations in obliquity and in longitude ?
 - Coupling between the polar motion and the obliquity ?

Angular momentum model (order 1)

Governing equations in the BF (Eckhardt, 1981): $\frac{d\vec{H}}{dt} + \vec{\Omega} \times \vec{H} = \vec{\Gamma}$ and $\frac{d\hat{p}}{dt} + \vec{\Omega} \times \hat{p} = 0$,

For CSI, $\hat{p}(t) = (p_X, p_Y, p_Z) \simeq (0, 0, 1)$ and we have (order 1)

$$(C - B)n^{2}m_{Y} + Anm'_{X} = 0$$

$$(A - C)n^{2}m_{X} + Bnm'_{Y} = -3n^{2}(A - C)[p_{X} + i\sin(M + \omega)]$$

$$-np_{Y} + nm_{Y} + p'_{X} = 0$$

$$np_{X} - nm_{X} + p'_{Y} = 0$$

→ Analytical solutions for the order 1 polar motion components $m_i(t)$ and normal to the Laplace plane components $p_i(t)$.

Angular momentum model (order 1)

Forced solutions are given by (in the BF)

$$\begin{cases} m_X(t) = 0 \\ m_Y(t) = -\frac{2\dot{\Omega}}{n}\theta_0\cos(M+\omega) \\ p_X(t) = -\frac{n-2\dot{\Omega}}{n}\theta_0\sin(M+\omega) \\ p_Y(t) = -\frac{n-\dot{\Omega}}{n}\theta_0\cos(M+\omega) \end{cases}$$

where (Baland et al., 2019) $\theta_0 = -\frac{3\frac{C-A}{B}in^4}{\left(f^2 - \sigma_{\text{QDFW},I}^2\right)\left(f^2 - \sigma_{\text{CW},I}^2\right)} \simeq \tilde{\theta}_1^{\text{Cl}} = \frac{i\alpha}{\alpha + \dot{\Omega}}$

The inertial obliquity is given by $\theta_{I}(t) \simeq \sqrt{\left[p_{X}(t) - m_{X}(t)\right]^{2} + \left[p_{Y}(t) - m_{Y}(t)\right]^{2}}$ and the inertial BF obliquity by $\tilde{\theta}_{I}(t) \simeq \sqrt{p_{X}(t)^{2} + p_{Y}(t)^{2}}$.

Angular momentum model (order 2)

Governing equations in the BF (Eckhardt, 1981): $\frac{d\vec{H}}{dt} + \vec{\Omega} \times \vec{H} = \vec{\Gamma}$ and $\frac{d\hat{p}}{dt} + \vec{\Omega} \times \hat{p} = 0$,

For CSI, we have (order 2 terms)

$$(C - B)n^{2}(m_{Y}\gamma'/n + \delta m_{Y}) + An\delta m'_{X} = -3n^{2}(B - C)(\gamma - 2e\sin M) \left[p_{X} + i\sin(M + \omega)\right]$$

$$(A - C)n^{2}(m_{X}\gamma'/n + \delta m_{X}) + Bn\delta m'_{Y} = -\frac{3}{2}n^{2}(A - C)\left[2\delta p_{X} - 2p_{Y}\gamma + e(6p_{X}\cos M + 4p_{Y}\sin M + i\sin\omega + 5i\sin(2M + \omega))\right]$$

$$-n(p_{Y}\gamma'/n + \delta p_{Y}) + n\delta m_{Y} + \delta p'_{X} = 0$$

$$n(p_{X}\gamma'/n + \delta p_{X}) - n\delta m_{X} + \delta p'_{Y} = 0$$

→ Analytical solutions for the order 2 polar motion components $\delta m_i(t)$ and normal to the Laplace plane components $\delta p_i(t)$.

Angular momentum model (order 2)

Forced solutions are given by (in the BF)

$$\begin{cases} m_X(t) = 0 + \left[\delta m_X^{ge_0}(t) + \delta m_X^{ge_0}(t) + \delta m_X^{gi}(t)\right] \sin \omega \\ m_Y(t) = -\frac{2\dot{\Omega}}{n} \theta_0 \cos(M + \omega) + \left[\delta m_Y^{ee_0}(t) + \delta m_Y^{ge_0}(t) + \delta m_Y^{gi}(t)\right] \cos \omega \\ p_X(t) = -\frac{n - 2\dot{\Omega}}{n} \theta_0 \sin(M + \omega) + \left[\delta p_X^{ee_0}(t) + \delta p_X^{ge_0}(t) + \delta p_X^{gi}(t)\right] \sin \omega \\ p_Y(t) = -\frac{n - \dot{\Omega}}{n} \theta_0 \cos(M + \omega) + \left[\delta p_Y^{ee_0}(t) + \delta p_Y^{ge_0}(t) + \delta p_Y^{gi}(t)\right] \cos \omega \\ \end{cases}$$
where (Baland et al., 2019) $\theta_0 = -\frac{3\frac{C - A}{B}in^4}{\left(f^2 - \sigma_{\text{QDFW},I}^2\right) \left(f^2 - \sigma_{\text{CW},I}^2\right)} \simeq \tilde{\theta}_I^{\text{Cl}} = \frac{i\alpha}{\alpha + \dot{\Omega}}$

The inertial obliquity is given by $\theta_{\rm I}(t) \simeq \sqrt{\left[p_X(t) - m_X(t)\right]^2 + \left[p_Y(t) - m_Y(t)\right]^2}$ and the inertial BF obliquity by $\tilde{\theta}_{\rm I}(t) \simeq \sqrt{p_X(t)^2 + p_Y(t)^2}$.

Obliquity of Ganymede and Callisto (CSI)

Nutations

• Anticlockwise motion of the z-axis of the BF (red) and _ of the spin axis (blue)

Polar motion

- Diurnal PM in y-direction
- Elliptical PM at pericenter precession period
- For Callisto, second order terms dominate over first order terms

Influence of a subsurface ocean

• Global subsurface ocean (Khurana et al., 1998, Kivelson et al., 1998-2000)

$$\frac{d}{dt}\vec{H}_{k} + \vec{\Omega}_{k} \times \vec{H}_{k} = \vec{\Gamma}_{k} \text{ for each layer } (k = i, k = o \text{ or } k = s)$$

$$\frac{d}{dt}\hat{p}_{k} + \vec{\Omega}_{k} \times \hat{p}_{k} = 0 \text{ for each solid layer } (k = i \text{ or } k = s).$$

Influence of a subsurface ocean

- Possible resonant amplification of the obliquity and the PM
- JUICE obliquity precision : ~0.2 arcsec

 \bullet

esa

Conclusion and perspectives

- Triaxiality of the icy satellites influences the CS
- Presence of a subsurface ocean can lead to resonant amplification of the obliquity and PM (constraints of the interior by JUICE ?)
- Influence of the tidal deformations on Cassini States still need to be studied

Thank you for your attention !