Post-AGB stars in the Magellanic Clouds as tracers of the s-process nucleosynthesis

Kenneth De Smedt

Promotor: Hans Van Winckel

30th April 2014

FNRS Contact Group Meeting

S-process

Origin of approximately half of all elements with Z > 26 Slow neutron capture w.r.t. β^2 decay Creation of elements heavier than Fe: A > 56

Example of s-process branch

S-process in the solar system

Three s-process peaks at magic neutron numbers

Closed neutron shells (N=50, N=82, N=126)

Solar abundances with s-process peaks

AGB and post-AGB stars

Low and intermediate mass stars ($M_{\star} \leq 8M_{\odot}$)

Solar evolution in HR diagram

Interior AGB star

• Thermal pulses mix He-burning ashes (¹²C) in intershell

- Thermal pulses mix He-burning ashes (12C) in intershell
- 3rd dredge-up: injection proton + transport of ¹²C (C-star)

- Thermal pulses mix He-burning ashes (12C) in intershell
- 3rd dredge-up: injection proton + transport of ¹²C (C-star)
- ¹³C-pocket creation: s-process during interpulse

- Thermal pulses mix He-burning ashes (12C) in intershell
- 3rd dredge-up: injection proton + transport of ¹²C (C-star)
- ¹³C-pocket creation: s-process during interpulse
- Cycle repeats: transport of ¹²C and s-elements

AGB nucleosynthesis models

Systematic observations needed:

- Constrain many assumptions
- Constrain assumed parameters
 - Mixing
 - Rotation
 - Overshooting
 - ...

Galactic sample

Large chemical diversity

- Strongly enriched
- Not enriched
- Depleted
- Mildly enriched (very rare)

Unknown distances: Systematic interpretation difficult

Goal of PhD thesis

Study of the s-process in extragalactic post-AGB stars in broad metallicity and luminosity range to better constrain s-process and 3rd dredge-up physics

Why post-AGB stars

- Photosphere dominated by atomic transitions
- No more strong mass-loss
- End products s-process and 3rd dredge-up

IRAS 13208-6020

Red Rectangle (HD44179)

Magellanic Clouds

Why extra-galactic?

- Constraint distance to star: luminosity \rightarrow initial mass
- Range in metallicity

Spitzer image SMC

Spitzer image LMC

Post-AGB spectra

- Enriched vs non-enriched
- Atmospheric parameters
- Abundance determination

Survey

- van Aarle et al., 2011, A&A 554, 106
- Kamath et al., 2014, MNRAS 439, 2211

Spectra of 3 post-AGB stars

De Smedt et al, 2012,A&A,541,67

Abundance analysis

- Example star: J004441.04-732136.4
- Via EW calculation (MOOG) and spectral synthesis
- Element over Fe ratio shows enrichment
- Low metallicity

De Smedt et al, 2012,A&A,541,67

Element over Fe ratio

Spectral synthesis

SED and initial mass

- SED gives luminosity
- Initial mass via theoretical post-AGB tracks
- Low mass

Initial mass determination

Observations vs models

- Reproduction abundance profile
- No absolute abundance reproduction
- C/O overestimated
- Strong Pb discrepancy

De Smedt et al, 2014,A&A,563,5

Model predictions vs observations

Pb abundance vs model

General conclusions

LMC and SMC post-AGB stars:

• Chemically very diverse (see upcoming papers)

General conclusions

LMC and SMC post-AGB stars:

- Chemically very diverse (see upcoming papers)
- S-process enriched subsample:
 - ideal test model predictions

General conclusions

LMC and SMC post-AGB stars:

- Chemically very diverse (see upcoming papers)
- S-process enriched subsample:
 - ideal test model predictions
 - Conclusions:
 - Models reproduce abundance distribution
 - BUT: absolute abundances poorly fitted
 - O strongly underestimated
 - Pb production strongly overestimated

Thank you for your attention

Questions?