Auroral signatures of Jupiter’s magnetospheric injections
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/ Conceptual model of Jupiter’s magnetospheric injections \

lo's orbit

Injections are associated with radial planetward transport of hot and sparse
plasma as a response to the outward transport of cold and dense plasma
originating from the lo plasma torus. Injection events involve high-energy
particles within a colder background plasma. As a consequence, plasma injection
processes are markers of the radial plasma transport in the Jovian middle
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Phase space density gradient :

PS1 >PS2 magnetosphere. During plasma event, in situ measurements show higher mean
energy, a broader energy spectrum and a differential drift across the field lines
due to the magnetic field gradient and curvature drifts /
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At Jupiter, energetic particle injections are associated with isolated equatorward
patchy auroral UV emissions.
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Databases:

a) Hubble Space Telescope (HST) observations obtained from 2000 to 2007 (~ 2000
images) — identification of 130 individual UV auroral features

b) HST spectral observations collected on 8 January 2014 in the northern hemisphere
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Modeling of the effect of the differential IST spectral observations
electrons drift on these auroral features , ;
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— characteristic energy of the auroral precipitation (the

The drift rates of the charged particles due to the gradient and energy is determined by assuming a model atmosphere)

curvature drifts depend on the particles’ energy
_ L #1 and #2 indicate two auroral signatures of plasma injections (the mean

 The brlghtne_ss of th_e aurqral features decrea_ses with time : the energy is higher than in the surrounding emissions).
energy density declines with time — the gradient and curvature
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— Quantifying the longitudinal size and the evolution of the @ Longitude SIII[deg’ = Longitude SIII[deg] are not

Injected electron population in the Jovian magnetosphere Dumont et al.2018] collocated

as a function of the spectral index (K)
— The color ratio peaks upstream of the feature relative to the

plasma rotation direction, as expected for auroral signatures of
Injections, since the high-energy electrons drift upstream of the low-
energy electrons, as evidenced by in situ measurements. /

— Using the model backward, we infer the age of structures from
the observed evolution of the longitudinal size :on average,
between a half and a full rotation of Jupiter, which is in
agreement with the observations

References : Mauk et al. 2002, doi:10.1038/4151003a Dumont et al. 2014,d0i:10.1002/2014JA020527 Dumont et al. 2018, doi;:10.1029/2018JA025708




