Galactic dynamics with Gaia

Benoit Famaey

CNRS - Observatoire astronomique de Strasbourg

Gaia DR2 in numbers

- 1.69×10^{9} with positions and G magnitudes down to $G=20.7$, essentially complete from $12<\mathrm{G}<17$
- 1.38×10^{9} with GBP and GRP photometry
- 1.33×10^{9} with positions, parallaxes and proper motions
- 7.2×10^{6} with radial velocities down to $\mathrm{G}=13$
- Various published Bayesian estimates of the distances for stars with relative precision on the parallax larger than 10% to 20%

Gaia-era Milky Way questions

- Decipher the structure of the Galaxy, and of each of its components (stellar pops, gas, satellite population), including its dark matter distribution, e.g.:
total mass,
\square core vs. cusp,
phase-space distribution
- Is it consistent with $\Lambda \mathrm{CDM}$, with specific DM alternatives (warm DM, self-interacting DM...), with modified gravity (MOND)?

MW dynamical models

Jeans theorem

■ Natural phase-space coordinates for regular orbits in (quasi)-integrable systems: actions \mathbf{J} and angles $\boldsymbol{\theta}$ $=$ phase-space canonical coordinates such that $\mathrm{H}=\mathrm{H}(\mathbf{J})$
$=>$ at equilibrium $f_{0}(\mathbf{J})$ solution of CBE

Actions and angles

$$
\begin{aligned}
& J_{k} \equiv \oint p_{k} d q_{k} \quad \Rightarrow \mathrm{H}_{0}=\mathrm{H}_{0}(\mathbf{J}) \quad \text { (renormalize by } 1 / 2 \pi \text {) } \\
& \dot{\theta}=\frac{\partial H_{0}}{\partial J}=\omega(J)
\end{aligned}
$$

-For thin disk: epicyclic approximation:

$$
\begin{aligned}
J_{\phi} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi L_{z}=L_{z}, \\
J_{z} & \simeq \frac{1}{\pi} \int_{z_{\min }}^{z_{\max }} \mathrm{d} z \sqrt{2\left[E_{z}-\Phi_{0, z}\right]}=\frac{E_{z}}{\nu}, \\
J_{R} & \simeq \frac{1}{\pi} \int_{R_{\min }}^{R_{\max }} \mathrm{d} R \sqrt{2\left(E_{R}-\Phi_{0, R}\right)}=\frac{E_{R}}{\kappa}
\end{aligned}
$$

Parametric distribution functions

■ The «quasi-isothermal » DF for disk populations, which become « Shu-Schwarzschild » for the epicyclic approximation:

$$
f_{0}\left(J_{R}, J_{\phi}, J_{z}\right)=\frac{\Omega\left(R_{g}\left(J_{\phi}\right)\right)}{(2 \pi)^{3 / 2} 2 \kappa\left(R_{g}\left(J_{\phi}\right)\right)} \frac{\tilde{\Sigma}\left(R_{g}\left(J_{\phi}\right)\right)}{\underbrace{\tilde{\sigma}_{r}^{2}\left(R_{g}\left(J_{\phi}\right)\right) \tilde{\sigma}_{z}^{2}\left(R_{g}\left(J_{\phi}\right)\right) z_{0}}_{\text {radial distribution in } R_{g}\left(J_{\phi}\right)}} \times e_{\begin{array}{l}
\text { velocity ellipsoid } \\
\text { together with the } \\
\text { velocity } \\
\text { disp.dependence } \\
\text { in previous factor }
\end{array}}^{e^{-\frac{J_{R} \kappa}{\tilde{\sigma}_{r}^{2}}-\frac{J_{z} \nu}{\tilde{\sigma}_{z}^{2}}}}
$$

- There are also DFs appropriate for NFW halos and cored DM halos (see e.g. Posti et al. 2015, Cole \& Binney 2017)

Vertical equilibrium

$$
\left.\begin{array}{c}
-4 \pi G \Sigma(Z)=\int_{-Z}^{Z} \frac{1}{R} \frac{\partial}{\partial R}\left(R F_{R}\right) d z+2 \cdot\left[F_{z}(Z)-F_{z}(0)\right], \quad \begin{array}{l}
\text { Poisson } \\
\text { eq. }
\end{array} \\
F_{R}=-\frac{\partial \phi}{\partial R}=\frac{1}{\rho} \frac{\partial\left(\rho \overline{U^{2}}\right)}{\partial R}+\frac{1}{\rho} \frac{\partial(\rho \overline{U W})}{\partial Z}+\frac{\overline{U^{2}}-\overline{V^{2}}}{R}+\frac{1}{\rho} \frac{\partial(\rho \bar{U})}{\partial t}, \\
F_{Z}=-\frac{\partial \phi}{\partial Z}=\frac{1}{\rho}\left[\frac{\partial\left(\rho \overline{W^{2}}\right)}{\partial Z}+\frac{\rho \overline{U W}}{R}+\frac{\partial(\rho \overline{U W})}{\partial R}+\frac{\partial(\rho \bar{W})}{\partial t}\right], \quad \text { Jeans }
\end{array}\right] \begin{aligned}
& \text { eqs. } \\
&
\end{aligned}
$$

But the disk is vertically perturbed

Laporte et al. 2018
(last pericentric passage of Sgr dwarf at $\mathrm{t}=0$)
\Rightarrow Can traditional Jeans modelling be applied?

Haines, D’Onghia, Famaey, Laporte, Hernquist 2019

Use this as a feature \& not a bug

$f\left(\mathrm{~J}_{\mathrm{z}}\right) \rightarrow f\left(\theta_{\mathrm{z}}, \mathrm{J}_{\mathrm{z}}\right)$ with concentration around $\theta_{z}=\pi$, then stars oscillate with their own ω_{z} depending on $\left(\mathrm{J}_{\phi}, \mathrm{J}_{\mathrm{R}}\right)$

Use this as a feature \& not a bug

Collective response of the disk?

Khoperskov et al. 2019

$f\left(\mathrm{~J}_{\mathrm{z}}\right) \rightarrow f\left(\theta_{\mathrm{z}}, \mathrm{J}_{\mathrm{z}}\right)$ with concentration around $\theta_{z}=\pi$, then stars oscillate with their own ω_{z} depending on $\left(\mathrm{J}_{\phi}, \mathrm{J}_{\mathrm{R}}\right) \ldots$ and \mathbf{H}

Response of the DM halo?

- LMC, Sagittarius dwarf and their own DM halo can exchange energy and angular momentum with the MW DM halo: our best shot at proving the existence of DM !

Response of the DM halo?

- LMC, Sagittarius dwarf and their own DM halo can exchange energy and angular momentum with the MW DM halo: our best shot at proving the existence of DM !

Back to the Galactic plane

Gaia collab, Katz et al. 2018

Perturbing the CBE

$$
\frac{\mathrm{d} f_{1}}{\mathrm{~d} t}=\frac{\partial f_{0}}{\partial \mathbf{J}} \cdot \frac{\partial \Phi_{1}}{\partial \boldsymbol{\theta}}
$$

More complicated at resonances where new action-angle variables can be defined
\Rightarrow Combination of multiple patterns: bar+spirals

Slow ($\sim 30-40 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$) or fast ($>50 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$) bar?

Nature of spiral arms?

Back to the solar neighbourhood

But... what can the bar alone do?

Gaia DR2

- Velocity and action space ridges due to
- The bar
- Spiral arms, including past transient ones (Sellwood et al. 2019)
- Ongoing phase-mixing (Antoja et al. 2018)
- ...
- Q: What does the bar alone do by itself to local stellar kinematics?
- A: More than I had thought !

The Garching MW bar model

Wegg C., Gerhard O., Portail M., 2015, MNRAS, 450, 4050

- Millions of RC stars from VVV survey + 2MASS+ UKIDDS + GLIMPSE
- => long flat ($\mathrm{h}_{\mathrm{z}}<50 \mathrm{pc}$) extension of the bar out to $>5 \mathrm{kpc}$ from the center ($\mathrm{l}>30^{\circ}$)
- Fit to BRAVA (central 10° in long.)
- +ARGOS (28000 stars $-30^{\circ}<1<30^{\circ}$ and $-10^{\circ}<b<-5^{\circ}$)
$\Rightarrow \Omega_{\mathrm{b}}=\mathbf{3 9} \mathbf{k m} / \mathrm{s} / \mathrm{kpc} \sim 1.33 \Omega_{0} \quad$ (Portail et al. 2017)
\Rightarrow Corotation at 6 kpc and OLR beyond 10 kpc !

Post-Gaia DR2

$1.75 \times 10^{8} \mathrm{PMs}(!!!)$ at
$-10^{\circ}<1<10^{\circ},-10^{\circ}<b<5^{\circ}$
in the VVV Infrared
Astrometric Catalogue
(VIRAC), calibrated on
Gaia DR2 (Clarke et al. 2019)

Post-Gaia DR2

$1.75 \times 10^{8} \mathrm{PMs}(!!!)$ at
$-10^{\circ}<1<10^{\circ},-10^{\circ}<b<5^{\circ}$

$$
\frac{\sigma_{l b}^{2}}{\sigma_{l} \sigma_{b}} \text { obs. }
$$

in the VVV Infrared
Astrometric Catalogue
(VIRAC), calibrated on
Gaia DR2 (Clarke et al. 2019)

See also Sanders et al. (2019)

Study the $\mathrm{m}=2,3,4$ and 6 modes in Monari et al. 2019 arXiv:1812.04151

The resonant zones in local velocity space

A DM core in the MW?

■ Bulge mass ($2.2 \mathrm{kpc}, 1.4 \mathrm{kpc}, 1.2 \mathrm{kpc}$): $1.85 \times 10^{10} \mathrm{M}_{\odot}$

- Stellar mass: $1.32 \times 10^{10} \mathrm{M}_{\circ}$
- Additional nuclear disk: $2 \times 10^{9} \mathrm{M}_{\circ}$
- Dark matter mass: $3.2 \times 10^{9} \mathrm{M}_{\circ}$

Portail et al. (2017)

Sharp falloff to keep the RC constant between 6 kpc and 8 kpc
=> cored DM profile at the center

What's next?

- Next data releases will improve even more the observational situation (e.g., RVS data for 3.5×10^{7} stars down to $\mathrm{G} \sim 15$)
- FROM US (DYNAMICISTS): improvements needed: on the MODELLING side (vertical perturbations with collective effects, bar and spiral arms formation, chemo-dynamical modelling...), also related to constraining the DM PHASE-SPACE DISTRIBUTION, and testing alternatives
- At the horizon 2020: WEAVE as spectroscopic counterpart to Gaia. High-res survey ($\mathrm{R} \sim 20000$) will allow chemical labelling to $\mathrm{G} \sim 16$ for $\sim 1.2 \times 10^{6}$ stars
+ Low-res surveys (disk and HighLat) for $\sim 2.75 \times 10^{6}$ stars
($\mathrm{R} \sim 5000$) deep in the disk and halo down to $\mathrm{G} \sim 20$

