

Benoit Famaey

CNRS - Observatoire astronomique de Strasbourg

Gaia DR2 in numbers

- 1.69×10^9 with positions and G magnitudes down to G=20.7, essentially complete from 12 < G < 17
- 1.38x10⁹ with GBP and GRP photometry
- 1.33x10⁹ with positions, parallaxes and proper motions
- 7.2×10^6 with radial velocities down to G=13
- Various published Bayesian estimates of the distances for stars with relative precision on the parallax larger than 10% to 20%

Gaia-era Milky Way questions

Decipher the structure of the Galaxy, and of each of its components (stellar pops, gas, satellite population), including its dark matter distribution, *e.g.*:

🗆 total mass,

 \Box core vs. cusp,

□ phase-space distribution

Is it consistent with ACDM, with specific DM alternatives (warm DM, self-interacting DM...), with modified gravity (MOND)?

MW dynamical models

Jeans theorem

Natural phase-space coordinates for regular orbits in (quasi)-integrable systems: actions J and angles θ
= phase-space canonical coordinates such that H=H(J)

=> at equilibrium $f_0(\mathbf{J})$ solution of CBE

Actions and angles

$$J_k \equiv \oint p_k \, dq_k \implies H_0 = H_0(\mathbf{J})$$
 (renormalize by 1/2 π)

$$\dot{\theta} = \frac{\partial H_0}{\partial J} = \omega(J)$$

-For thin disk: epicyclic approximation:

$$J_{\phi} = \frac{1}{2\pi} \int_{0}^{2\pi} \mathrm{d}\phi L_{z} = L_{z},$$

$$J_{z} \simeq \frac{1}{\pi} \int_{z_{\min}}^{z_{\max}} \mathrm{d}z \sqrt{2[E_{z} - \Phi_{0,z}]} = \frac{E_{z}}{\nu},$$

$$J_{R} \simeq \frac{1}{\pi} \int_{R_{\min}}^{R_{\max}} \mathrm{d}R \sqrt{2(E_{R} - \Phi_{0,R})} = \frac{E_{R}}{\kappa}$$

Fouvry et al.

Parametric distribution functions

The « quasi-isothermal » DF for disk populations, which become « Shu-Schwarzschild » for the epicyclic approximation:

$$f_{0}(J_{R}, J_{\phi}, J_{z}) = \frac{\Omega(R_{g}(J_{\phi}))}{(2\pi)^{3/2} 2\kappa(R_{g}(J_{\phi}))} \underbrace{\tilde{\Sigma}(R_{g}(J_{\phi}))\tilde{\sigma}_{z}^{2}(R_{g}(J_{\phi}))z_{0}}_{\text{radial distribution in } R_{g}(J_{\phi})} \times e^{-\frac{J_{R^{\kappa}}}{\tilde{\sigma}_{z}^{2}} - \frac{J_{z^{\nu}}}{\tilde{\sigma}_{z}^{2}}}$$

There are also DFs appropriate for NFW halos and cored DM halos (see e.g. Posti et al. 2015, Cole & Binney 2017)

Vertical equilibrium

But the disk is vertically perturbed

 \Rightarrow Can traditional Jeans modelling be applied?

Haines, D'Onghia, Famaey, Laporte, Hernquist 2019

2.0

Use this as a feature & not a bug

 $f(J_z) \rightarrow f(\theta_z, J_z)$ with concentration around $\theta_z = \pi$, then stars oscillate with their own ω_z depending on (J_{Φ_z}, J_R)

Use this as a feature & not a bug

 $f(J_z) \rightarrow f(\theta_z, J_z)$ with concentration around $\theta_z = \pi$, then stars oscillate with their own ω_z depending on (J_{Φ_1}, J_R) ... and H

Phase-spiral >Gyr after bar buckling phase

Response of the DM halo?

LMC, Sagittarius dwarf and their own DM halo can exchange energy and angular momentum with the MW DM halo: our best shot at proving the existence of DM !

Response of the DM halo?

LMC, Sagittarius dwarf and their own DM halo can exchange energy and angular momentum with the MW DM halo: our best shot at proving the existence of DM !

Back to the Galactic plane

Gaia collab, Katz et al. 2018

Perturbing the CBE

Monari et al. 2016

More complicated at resonances where new action-angle variables can be defined

⇒Combination of multiple patterns: bar+spirals

Slow (~30-40 km/s/kpc) or fast (>50 km/s/kpc) bar?

Nature of spiral arms?

Back to the solar neighbourhood

Monari et al. 2019 ($3x10^5$ stars within 200 pc)

 \Rightarrow Multiple ridges highly suggestive of multiple patterns

But... what can the bar **alone** do?

Gaia DR2

Velocity and action space ridges due to

- The bar
- Spiral arms, including past transient ones (Sellwood et al. 2019)
- Ongoing phase-mixing (Antoja et al. 2018)
- ...
- Q: What does the bar alone do by itself to local stellar kinematics?
- A: More than I had thought !

The Garching MW bar model

Wegg C., Gerhard O., Portail M., 2015, MNRAS, 450, 4050

- Millions of RC stars from VVV survey + 2MASS+ UKIDDS + GLIMPSE
- => long flat ($h_z < 50$ pc) extension of the bar out to >5 kpc from the center (l>30°)
- Fit to BRAVA (central 10° in long.)
- +ARGOS (28000 stars - $30^{\circ} < l < 30^{\circ}$ and - $10^{\circ} < b < -5^{\circ}$)
- $\Rightarrow \Omega_{\rm b} = 39 \text{ km/s/kpc} \sim 1.33 \Omega_0$ (Portail et al. 2017)
- \Rightarrow Corotation at 6 kpc and OLR beyond 10 kpc !

Post-Gaia DR2

1.75x10⁸ PMs (!!!) at -10°<l<10°, -10°<b<5° in the VVV Infrared Astrometric Catalogue (VIRAC), calibrated on Gaia DR2 (Clarke et al. 2019)

Post-Gaia DR2

1.75x10⁸ PMs (!!!) at -10°<l<10°, -10°<b<5° in the VVV Infrared Astrometric Catalogue (VIRAC), calibrated on Gaia DR2 (Clarke et al. 2019)

obs. $\sigma_l \sigma_b$

37.5 km/s/kpc

b

See also Sanders et al. (2019)

50 km/s/kpc

R(kpc)

The resonant zones in local velocity space

A DM core in the MW?

Bulge mass (2.2 kpc, 1.4 kpc, 1.2 kpc): $1.85 \times 10^{10} M_{\odot}$

- \blacksquare Stellar mass: $1.32 \times 10^{10} \ M_{\odot}$
- \blacksquare Additional nuclear disk: $2\times 10^9~M_{\odot}$
- \blacksquare Dark matter mass: 3.2 \times 10 $^9\,M_{\odot}$

Sharp falloff to keep the RC constant between 6 kpc and 8 kpc => cored DM profile at the center

What's next?

- Next data releases will improve even more the observational situation (e.g., RVS data for 3.5×10^7 stars down to G~15)
- FROM US (DYNAMICISTS): improvements needed: on the MODELLING side (vertical perturbations with collective effects, bar and spiral arms formation, chemo-dynamical modelling...), also related to constraining the DM PHASE-SPACE DISTRIBUTION, and testing alternatives
- At the horizon 2020: WEAVE as spectroscopic counterpart to Gaia. High-res survey (R~20000) will allow chemical labelling to G~16 for ~1.2x10⁶ stars

+ Low-res surveys (disk and HighLat) for $\sim 2.75 \times 10^6$ stars (R ~ 5000) deep in the disk and halo down to G ~ 20