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Exoplanet	Science	in	the	2020s	and	beyond
The	Characterisation	Era.	Photometry	to	Spectroscopy



What	is	the	Composition	of	Most	Common	Exoplanets?
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Bean et al. (2021)

see also Burn et al. (2024) 

Embryo	migration	
model	favours	
volatile-rich	planets

Pebble	drift	model
favours	volatile-poor	
planets



Mass	and	Radius

Planet	Bulk	Composition
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Gas	GiantsRocky	
Worlds

Sub-Neptunes

Rock (Interior)
(Fe, Si, Mg, Ca, Al, O, S, C, …)

Gas (Atmosphere)
(H, C, O, N, S, …)

First	Insights	into	Exoplanet	Composition

Data: NASA/Caltech Exoplanet Archive
Equations of state: Seager et al. (2007); 
Hakim, Rivoldini, Van Hoolst et al. (2018)

0.05–5 wt% gas



Atmospheric	
Constraints
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Atmospheric metallicity of 1x – 100x solar

TOI-421b: 1x solar; H2O, CO? (Davenport et al. 2025) 

TOI-270d: 200x solar; CH4, CO2, H2O? (Benneke et al. 2024) 

K2-18b: ~100x solar; CH4, CO2 
(Madhusudhan et al. 2023) 

JWST	cannot	reveal	the	
composition	of	deeper	layers

H2 H2 + H2O

H2

condensed 
H2O

magma + 
H2 + H2O ?

solid silicate

Fe

liquid silicate 
(magma) + Fe
+ H2O ?

H2 + H2O ?

(high metallicity) (high metallicity)

(low metallicity)(metallicity ?)



Theoretical	
Predictions
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Tang et al. (2025); see also Vazan et al. (2018)

Magma ocean lifetime exceeds 1 Gyr

H2-rich envelope dissolves in magma

H2 exhibits non-ideal (real) gas behaviour

Magma and envelope produce SiH4 and SiO

H-C-N-O-bearing gases also dissolve in 
magma and exhibit real gas behaviour

Chachan & Stevenson (2018)

Kite et al. (2019)

Magma and envelope react
Schlichting & Young (2022)

Misener et al. (2023); Charnoz et al. (2023)

Tian & Heng (2024)

Zilinskas et al. (2023); Ito et al. (2025)

SiO (5-6 𝝻m) and SiH4 (4.5 𝝻m) are observable



Magma–Envelope	Coupling	=	Exchange
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Volatile	Element	
Budget	from	
Metallicity

Refractory	Element	
Budget	from	
Metallicity	and	

Mantle	Melt	Budget

Envelope

Magma

Python 3.10+

github.com/ExPlanetology/atmodeller

Gas	–	Gas	Reactions

Magma	–	Gas	Reactions
Gas	Solubility	in	Magma
Real	Gas	Behaviour

Bower, Thompson, Hakim et al. (2025)



Lack	of	Thermochemical	Data
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Gas	–	Gas	Reactions

Magma	–	Gas	Reactions
Gas	Solubility	in	Magma
Real	Gas	Behaviour

• Experimental	validity	for	limited	pressures/temperatures
• Data	missing	for	certain	species
• Little	or	no	data	on	miscibility	of	magma	and	hydrogen

Equilibrium	constants

Gas	solubility	constants

Phase	relations

Equations	of	state



New	Real	Gas	Equation	of	State	of	SiH4
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Hakim et al. (2025, in review)

Second-order virial equation 
fit to experimental data on 
silane (P < 138.7 GPa = 1387 
kbar, Wang et al. 2018) 

𝑍 =
𝑃𝑉
𝑅𝑇

Compressibility of SiH4

SiO!(#$%#$) + 4H!(%$') ⇌	SiH((%$') +	2H!O(%$')



MEB	Partial	Pressures	:	Ideal	v/s	Real
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H-O-Si Chemical System

𝑓 = 𝞥	𝑃

fugacity

partial 
pressure

fugacity
coefficient

Hakim et al. (2025, in review)

Divergent real gas behaviour 
of SiO and SiH4 

Real gas behaviour leads to 
a higher solubility of H

MEB = Magma–Envelope Boundary



Depletion	of	H2/He	and	Enhancement	of	SiO
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H-He-C-N-O-Si Chemical System

Hakim et al. (2025, in review)

Si-bearing gases are important at the magma-
envelope boundary

All gases exhibit strong non-ideal effects



Chemical	Abundances	Diverge	from	Nebular

13Hakim et al. (2025, in review)



Silane–Methane	Competition	in	TOI-421b	?

14Hakim et al. (2025, in review)

High mantle melt 
fraction and low 
accreted gas 
metallicity favour 
silane over methane

100x solar – 1% melt 
can also explain 
observations

Observations are 
consistent with 1x 
solar – 0% melt

mantle melt

metallicity



Silane/Methane	(Si/C	ratio)	as	a	Diagnostic	
of	Metallicity	and	Mantle	Melt	Fraction
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• Magma-derived	Si	and	
envelope-derived	H

• Envelope-derived	C	and	
envelope-derived	H

Hakim et al. (2025, in review)

SiO(%$') + 3H!(%$') ⇌	SiH((%$') +	H!O(%$')

CO(%$') + 3H!(%$') ⇌	CH((%$') +	H!O(%$')



Take	Away	Messages
• Atmosphere	chemistry	with	gas	solubility	and	real	gas	behaviour,	
including	a	new	EOS	of	SiH4	(also	SiO)
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• Silane–methane	competition	(Si/C	ratio)	could	be	a	diagnostic	of	
accreted	gas	metallicity	and	mantle	melt	fraction	

• Need	new	thermochemical	data	on	the	stability	of	phases	at	extreme	
pressures	and	temperatures

• Elemental	abundances	in	the	envelope	diverge	from	those	of	
accreted	gas	metallicity	(not	considered	by	retrievals	yet)



A	Multi-Disciplinary	Approach	on	Interior–
Atmosphere	Coupling	of	Sub-Neptunes

Lab	Experiments

Multi-Anvil (O. Namur) 

Volatile	Element	
Budget	from	
Metallicity

Refractory	Element	
Budget	from	
Metallicity	and	

Mantle	Melt	Budget

Envelope

Magma

Models

Anjana ShajuLuka Vranckx
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Thank	You



Depletion	of	H2/He	and	Enhancement	of	SiO
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H-He-C-N-O-Si Chemical System

Hakim et al. (2025, in review)

Full Range



M-R	Data	Are	Degenerate:	Water-rich?

20

Dorn & Lichtenberg (2021) ApJL
see Kite et al. (2020);Bower et al. (2022)

Mass-radius	measurements	point	to	
dry	and	wet	exoplanet	populations* Dry/wet	mantle	

models	lead	to	a	
difference	of	up	
to	16%	in	radius* for M-dwarf planets

Hydrogen	and	
rock	can	be	
miscible	at	
high	pressures

Vazan et al. (2022)
Young et al. (2025)

Sub-Neptunes	could	contain	0.01–1	wt%	H2	and	<	10	wt%	water	Luque & Pallé (2022) Sci


