
Dust in space Simulating Dust in Space Dusty Kelvin-Helmholtz Instability Outlook

Dust Dynamics in Astrophysical Fluids

Tom Hendrix

Centrum voor Plasma-Astrofysica
K.U.Leuven

Brussels, 14 May 2012

T. Hendrix Dust Dynamics in Astrophysical Fluids Brussels, 14 May 2012 1 / 26



Dust in space Simulating Dust in Space Dusty Kelvin-Helmholtz Instability Outlook

Dust Dynamics in Astrophysical Fluids

Overview

Introduction: Dust in Space

Simulating Dust in Space

Dusty Kelvin-Helmholtz Instability

Outlook

T. Hendrix Dust Dynamics in Astrophysical Fluids Brussels, 14 May 2012 2 / 26



Dust in space Simulating Dust in Space Dusty Kelvin-Helmholtz Instability Outlook

Dust in Space

T. Hendrix Dust Dynamics in Astrophysical Fluids Brussels, 14 May 2012 3 / 26



Dust in space Simulating Dust in Space Dusty Kelvin-Helmholtz Instability Outlook

Dust in Space

Dust plays an important role in a broad range of locations in
space. E.g.:

Torus around SMBHs

Molecular clouds (e.g. stellar formation)

Protoplanetary disks

Cometary outflows

Left figure: Barnard 68, credit VLT,ESO. Right figure: NGC 4261
in radio and optical, credit NASA
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Dust in Space

However, dust is (often) dilute, nd ≈ 10−12 cm−3 in the ISM.
Therefore, it has often been ignored in simulations. However, in
the last decade several approached have been used to investigate
the role of dust dynamics:

Two-fluid Eulerian HD (Paardekooper & Mellema (2006); van
Marle, Meliani and Keppens (2011))

Two-fluid SPH (Laibe & Price (2011))

Hybrid methods (Youdin & Johansen (2007), Miniati (2010))
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Protoplanetary Disks

How can dust clump to protoplanets?

Dust dynamics is complex:

Important 3D effects

Large range of dust size: ≈ 10−9 m - 10 m

Size distribution?

Gas-dust drag law can vary significantly in
different regions

Multitude of timescales: Keplerian rotation,
drag, infall, instability,... Credit: NASA/ESA/L.

Ricci (ESO)

E.g. Meheut et al. (2012), Formation and long-term evolution of
3D vortices in protoplanetary discs, using the MPI-AMRVAC code
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MPI-AMRVAC

Study dust dynamics using numerical simulation:

MPI-AMRVAC

Grid based parallel code

Adaptive mesh-refinement

up to 3D Cartesian and curvilinear grids

Several physics modules: HD, MHD, SR, HD+Dust,...

Keppens et al., 2012
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HD multi-fluid dust module

Dust as extra fluids

Dust is pressureless gas

Every dust species has a set grain size
and grain density

Gas-dust coupling using combined
Epstein drag law
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Dusty
Kelvin-Helmholtz

Instability
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Kelvin-Helmholtz Instability

Classical KHI:

Shear induced instability

No density of pressure difference
needed

Most simple setup: discontinuity in
velocity is unstable for all wavelengths

Stabilization can be introduced by
surface tension of a transition layer De Sterrennacht, Vincent

van Gogh
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Kelvin-Helmholtz Instability

Approach: We study the effect of dust on the KHI by comparing
the analytical gas-only solution with gas+dust simulations.

Setup:

Stabilized configuration with two
layers, separated by a thin layer.

Uniform gas density.

Different setups with only dust in one
layer or uniform in both.

Effective resolution 1024×2048.

Basic setup: 4 dust types, size
distribution between 5nm and 200nm.

Subsonic velocity difference.
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Linear phase

Gas linear phase growth known from solving the dispersion
relation. Growth in the simulations can be inferred from the kinetic
energy perpendicular to the flow:
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Linear phase

From which we derive the dependency of the growth rate on the
wavelength of the perturbation.
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Linear phase
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Kelvin-Helmholtz Instability

So, what does it
look like?
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Non-linear phase

After initial linear KH-phase: dust separation phase.
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Non-linear phase: The Dust Vacuum Cleaner

Exponential decrease in dust density from start of non-linear phase:
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Non-linear phase: Dust Density Increase

Heavier dust species tend to clump to higher densities:
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Outlook

Investigation of dust
rarefaction/clumping in 3D

Study dust in other
astrophysical instabilities:
Rayleigh-Taylor and
Richtmyer-Meshkov

Expansion of dust code to MHD

Study dust in specific
astrophysical setups such as the
protoplanetary disk, etc.
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Thank you for your attention,
questions?
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