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The Magnetospheric Multiscale Mission
(MMS)

e launched on March 13th, 2015

e four spacecrafts flying in
formation with variable separation
(di, de separation)

* will skim the magnetopause
boundary during the first phase of

operation

* aims at understanding the
interplay of micro- and macro-
scale in magnetopause
reconnection
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1.  The terrestrial magnetopause
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Focus on the Electron Diffusion Region
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|dentifiable by:
inversion of the longitudinal magnetic field component, BL (Bx)
increased out of plane current, Ju (Jz)
area of increased dissipation, J.E >0

Important because:
driver of the reconnection process
preferential channel of entrance for solar wind particles into the magnetospheric system



MMS encounters with Electron Diffusion and
observation of the electron crescent
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Fully kinetic simulation of
magnetopause reconnection
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Origin of the core and crescent electron
population
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Origin of the core and crescent electron

population
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Origin of the core and crescent electron
population
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Conclusions

Reconnection at the terrestrial magnetopause is a fundamental piece of the Sun-Earth connection puzzle

The MMS mission has been recently launched to investigate magnetopause reconnection at the ion and
electron scales

The MMS can, for the first time, investigate velocity space with electron-scale resolution
— observations and simulations are finally on an equal footing as regards electrons

We investigate the origin of the crescent distribution observed in the perpendicular velocity space with fully
Kinetic simulations

Our ion to electron mass ratio is higher than comparable simulations (mr= 256 vs mr= 25)
We identify different path of access to the Electron Diffusion Region for core and crescent electrons

Core electrons cross the exhaust and are eventually trapped at the sphere-side separatrix, where they get
accelerated in the parallel direction by the ambipolar field

Crescent electrons meander back and forth between the sheat and the sphere; crossing the neutral line when
unmagnetised translated to switching to an higher (sheat to sphere) or lower (sphere to sheat) energy shell
— crescent formation

REFERENCE: Arokiaraj, Innocenti, Cazzola, Lapenta, “On the electron mixing of the crescent and core
populations in reconnection at the Earth's magnetopause ”, in preparation
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