

Thermal Instability and Condensation Formation in Coronal Loops

Connecting spectral and time-dependent approaches

Adrian Kelly

Supervisor: Prof. Rony Keppens

Centre for mathematical Plasma-Astrophysics (CmPA)

FNRS Contact Group Astronomie & Astrophysique 14 October 2025

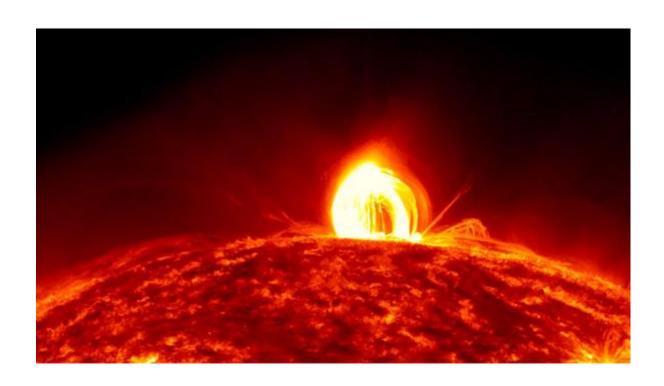
Thermal instability in the solar atmosphere

How does the corona, at over 1 million K, give rise to cool, dense condensations such as prominences or coronal rain?

Plasma 10-100x cooler than their surroundings – "snowflakes in an oven"

- Prominences are large, cool (~10⁴K)
 plasma clouds suspended in the corona;
 lasting days-weeks.
- Coronal rain is small, short-lived condensations that form in loops and fall along field lines.

Localised cooling instability



Courtesy of NASA/SDO

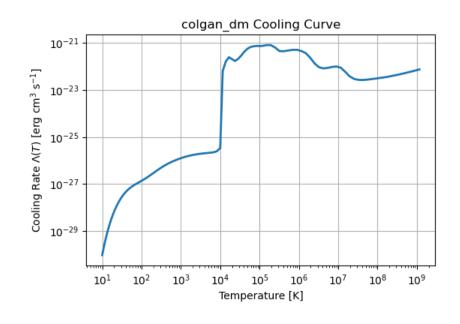
Thermal instability and the heat-loss function

Net heat-loss function:

$$\rho \mathcal{L}(s,T) = \rho^2 \Lambda(T) - H(s)$$

- $\Lambda(T)$: optically thin radiative cooling curve (atomic emissions)
- H(s): heating function (e.g. wave dissipation, reconnection)
- Small T↓ can increase losses, driving T↓ and ρ ↑.
- Leads to runaway cooling and condensation (Parker, 1953; Field, 1965)

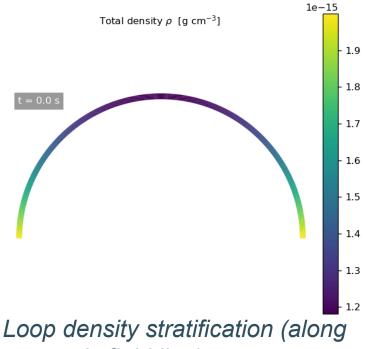
$$\left(rac{\partial \mathcal{L}}{\partial \mathcal{T}}
ight)_{
ho} < 0 \quad \Rightarrow \quad \text{unstable}$$



Loop model

Investigate early-stage instability onset in a simple loop model.

- 1D hydrodynamic model along a magnetic field line.
- Semi-circular loop geometry with line-tied footpoints.
- Subject to gravitational stratification
- Initially uniform temperature.



magnetic field line)

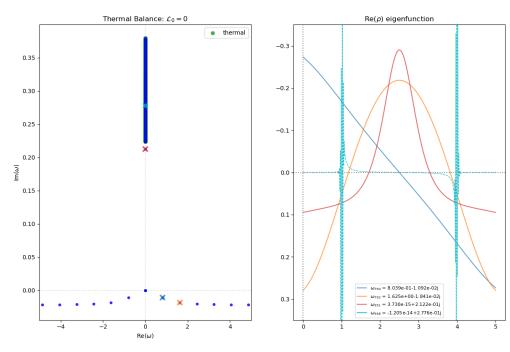
Aims

How can we apply MHD spectroscopy to understand the dynamics at play?

Claes et al., 2020, ApJS

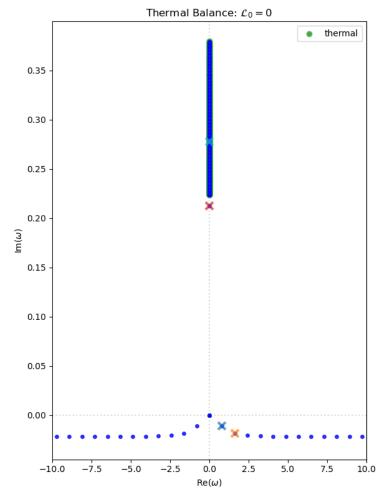
Claes and Keppens, 2023, Comput. Phys. Commun.

MHD spectroscopy: waves & instabilities



(Magneto)hydrodynamic spectroscopy

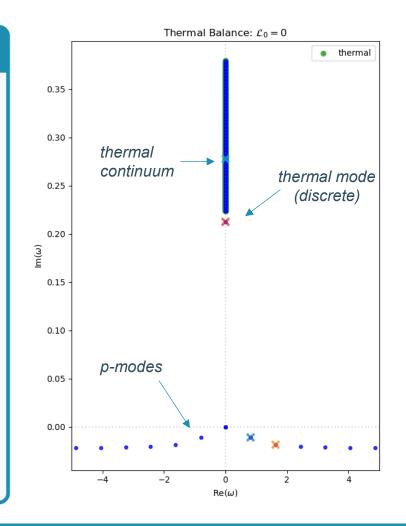
- Study all linear waves and instabilities supported. How?
- Linearised MHD equations: $\rho = \rho_0 + \rho_1$ (equilibrium + small pert.)
- Expand perturbations as **normal modes**: time dependence $\rho_1 \sim \exp(-i\omega t)$.
- Compute the linear hydrodynamic spectrum by quantifying all:
 - Eigenvalues growth/decay rates
 - Eigenfunctions spatial structure of modes
 - Oscillations: $\Re(\omega)$
 - Growth/damping: $\Im(\omega)$

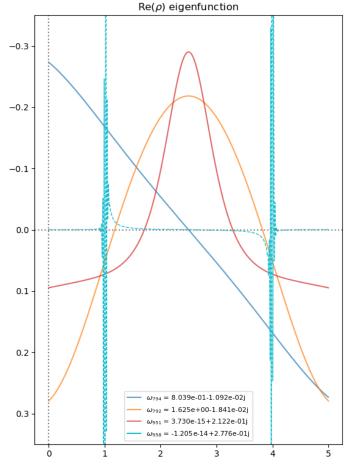


The hydrodynamic spectrum

Spectral analysis of the loop

- 1D hydrodynamics has 3
 wave modes: ± p-modes
 and thermal modes
- Damped p-modes, stabilised by radiative losses.
- Unstable thermal branch along $\Re(\omega) = 0$.
- Thermal branch contains:
 - continuum (highly localised)
 - discrete global modes.





Effect of background heating on stability

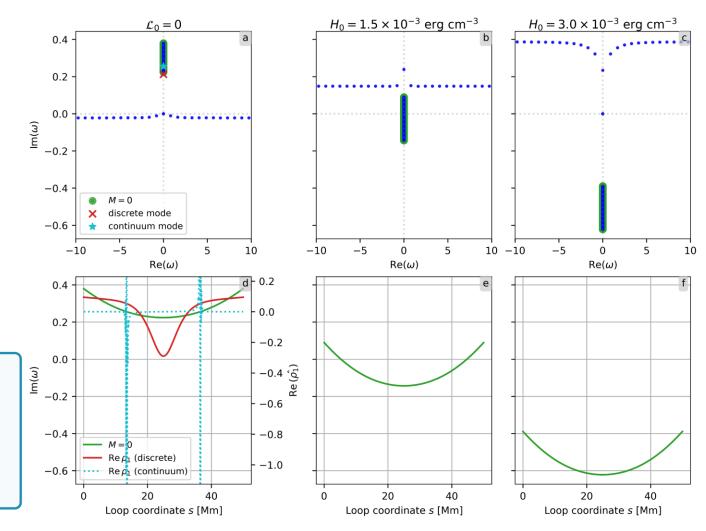
Thermal misbalance:

$$\mathcal{L}_0(s) = \rho_0 \Lambda(T_0) - H_0(s).$$

- Three heating levels:
 - (a) thermal balance: $\mathcal{L}_0 = 0$
 - (b) mild excess heating: $H_0 = 1.5 \times 10^{-3}$ erg cm⁻³ s⁻¹
 - (c) strong excess heating: $H_0 = 3.0 \times 10^{-3}$ erg cm⁻³ s⁻¹

(Keppens et al., 2025, ApJ, 989, 51)

- Are these unstable modes actually excited?
- Do their growth rates match in time evolution?
- Which modes are dominant, and how important is transient behaviour?
- When do nonlinear effects take over from linear growth?



Linking the spectrum with numerical simulation

LEGOLAS

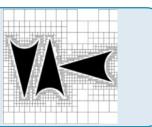
- Eigenvalues and eigenfunctions
- Stability and growth rates
- Mode structure along the loop

LEGOLAS-IVP

- Evolve perturbations in time
- Confirm dominant spectral mode
- Identify which ICs excite which modes
- Capture transient behaviour

MPI-AMRVAC

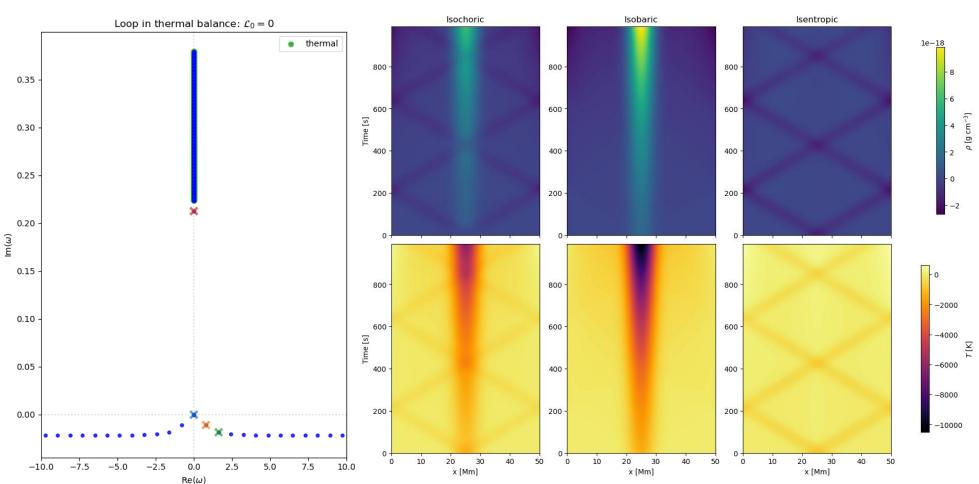
- Follow onset → saturation
- Formation and evolution of condensations
- Nonlinear Quantify linear → nonlinear transition



Spectral response to initial conditions

- Pulses in temperature and density used to excite modes
- Isobaric: localised thermal instability
- Isentropic: acoustic pmodes
- Isochoric: both thermal and p-modes

TI is most closelyassociated with **isobaric** conditions.



Summary and outlook

Summary:

- 1D HD loop study linking spectral analysis, linear IVP evolution, and nonlinear simulations.
- Time-dependent behaviour (modes + growth rates) is consistent with the linear spectrum.
- Demonstrated that **linear thermal modes** can **evolve nonlinearly into condensations** (not shown).

Future Outlook:

- Effects of thermal conduction: Assess the expected stabilising effects of $\kappa_{\parallel} \neq 0$.
- Extend to MHD: coupling with Alfvénic and slow-mode dynamics.
- More realistic models: add chromospheric base, localised heating prescriptions

Thank You

Thank you for your attention!

Any questions?

Appendix A: Thermal instability mechanism

Mechanism (Field 1965):

- Small parcel of gas undergoes a perturbation in T or ρ
- Thermodynamics (1st law): $T \frac{dS}{dt} = -\mathcal{L}$
- Linearised:

$$rac{d\,\delta \mathcal{S}}{dt} = -rac{1}{
ho\,T}\left(\mathcal{L}_
ho\,\delta
ho + \mathcal{L}_T\,\delta T
ight) = -rac{1}{
ho\,T}\left(\delta\mathcal{L}
ight)$$

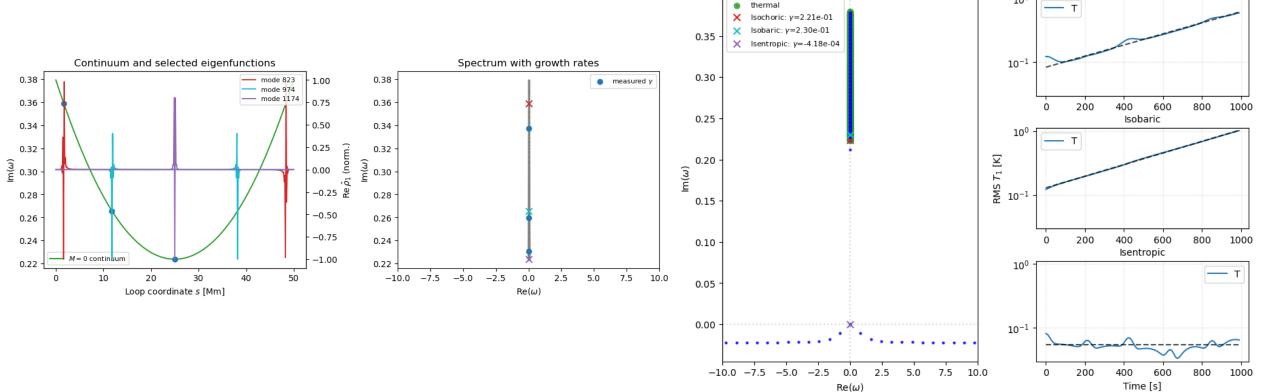
Instability condition:

- Runaway cooling if small cooling perturbation causes drop in entropy: $\delta T < 0 \Rightarrow d\delta S/dt < 0$
- Assume isochoric ($\delta \rho = 0$). This happens if

$$\left(\frac{\partial \mathcal{L}}{\partial T}\right)_A < 0 \quad \Rightarrow \quad \text{unstable}$$

$$A = p$$
 (isobaric) or $A = \rho$ (isochoric)

Appendix B: Additional figures



Legolas spectrum

Isochoric

