Dust properties of hot exozodis derived from near- and mid-infrared interferometry

Florian Kirchschlager

Steve Ertel, Sebastian Wolf, Alexis Matter, Alexander Krivov, Tim Pearce, Thomas Stuber

Ghent University

08 December 2022

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

What are hot exozodis?

- Debris discs: Dust located in the close vicinity of main-sequence stars (r < 1 au)
- Probably at or close to the sublimation radius (0.01 au - 1 au)

- High temperatures (~1000 K) → *hot* dust
- Emission peaks in the NIR and short MIR

Requirements for observations

- <u>High angular resolution</u> (~0.01 as)
- **<u>@ NIR and short MIR</u>** wavelengths
- High contrast between dust and stellar emission
- Long-baseline interferometry (VLTI/PIONIER & CHARA/FLUOR) H band @ 1.6 µm K band @ 2.2 µm

Origin of hot exozodis?

- Problem: radiation pressure and sublimation remove dust within short timescales (days to years)
- Solutions:

1. Continous dust delivery

- *in situ* steadystate collisional cascades
- Cometary supply
- Poynting Robertson (PR)-drag

2. Dust trapping

- Gas trapping
- Magnetic fields
- Differential Doppler Effect

Mechanism which fully explain the existence of hot exozodis still unclear

Interferometric observations

- First detected hot exozodi emission: Vega (Absil+ 2006)
- Today: $\underline{23 \text{ systems}}$ with NIR excess associated with circumstellar dust
- Surveys by Absil+ (2013), Ertel+ (2014, 2016), Nuñez (2017)
- VLTI/PIONIER, VLTI/VINCI, CHARA/FLUOR, IOTA/IONIC, KIN, LBTI: AufdenBerg+ (2006), di Folco+ (2007), Absil+ (2008, 2009), Akeson+ (2009), Defrère+ (2011, 2012), Lebreton+ (2013), Mennesson+ (2013. 2014)

SED modelling - challenges

- Small amount of NIR and MIR data (low-sampled SED)
- K band (2.2 µm; Absil+ 2013) and N band (8.5 µm; Mennesson+ 2014)

- Simple disk model
 - Disk ring with inner radius R, outer radius 1.5 R
 - Single grain size *a*
 - Geometry: Face-on and edge-on disk, spherical distribution
- SED-modelling, using code **debris** (Ertel et al. 2011)

Disk size, grain size, age trend

- 0.01 au < R < 1 au
- Correlation $R \propto \sqrt{L}$

• a < 0.5 µm

Kirchschlager+ (2017)

Disk size, grain size, age trend

Material: silicates or carbonaceous dust?

We need more observations

- For better constraints on dust properties
- Intermediate wavelengths

We need more observations

- For better constraints on dust properties
- Intermediate wavelengths

VLTI/MATISSE

- MATISSE (Multi AperTure mid-Infrared SpectroScopic Experiment)
- Second generation MIR interferometer, operating since April 2019
- L/M (λ = 3 5 µm) and N band (λ = 8 13 µm)

MATISSE observation of **k** Tuc (HD 7788)

- Observations on 9 and 11 July 2019 (2 x 1 h) in LOW resolution:
 - L/M band (3.2 4.5 $\mu m, \lambda_c \sim 3.9 \; \mu m)$
 - N band data ignored (too noisy)
- Medium configuration of ATs (Baselines $B \sim 30 95$ m)
 - Star (mostly) unresolved
 - Expected circumstellar emission resolved

- Closure Phases: ~ 0 Stellar companion can be ruled out
- Visibility drop from dust emission

Kirchschlager+ (2020)

Significant flux of circumstellar material

- Calculation of real dust fluxes
- For the central star κ Tuc: Dust fluxes between 0.5 and 0.9 Jy

SED modelling - MIR 2019 + NIR 2012 & 2014

Prospects for the observation of hot exozodis using MATISSE

- MATISSE is able to observe/detect hot exozodis!
- Further confirmation of the existence of hot dust
- Given the dust-to-star flux ratio of up to 7 % in L band is not unusual, MATISSE will most likely allow the discovery of new hot exozodis
- GRA4MAT will probably increase the sensitivity

- Observations of 7 hot exozodis in September and October 2022
- In particular: -First observation of Fomalhaut in MIR

-Reobservation of κ Tuc in Sep and Oct 2022 (temporal variability in MIR?)

Are large dust grains in hot exozodis?

- Goal: reproduce KIN flux (not upper limit), taking into account larger field of view
- Allows the presence of 10 to 1000 µm grains:

 10^{-4}

 10^{-5}

 10^{-6}

 F_{\max}^{ν} /Jy

• Relative flux contribution up to

@870 μm

- 50% at λ = 4.1 µm
- 90% at λ = 11.1 µm
- Observable with ALMA? No.

Main messages from observations

- Disc radius close to sublimation radius
- Grain size not well constrained
- Carbonaceous material required
- Future MATISSE (+GRAVITY) observations will help to further constrain zodi properties

Thank you for your attention!

Visibilities of disc model

Calculate the visibility of the maps (thermal emission + scattering) of the best-fit disc model

- Approximates the obs. data and the visibilities of the model of uniform circumstellar emission
- Disc model is compatible with the interferometric data