Atmospheric tomography of a red supergiant star µ Cep

Kateryna Kravchenko<sup>1</sup>

S. Van Eck<sup>1</sup>, A. Chiavassa<sup>2</sup>, A. Jorissen<sup>1</sup>, T. Merle<sup>1</sup>

<sup>1</sup> Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Bruxelles, Belgium <sup>2</sup> Université Côte d'Azur, Observatoire de la Côte d'Azur, Nice, France











- Context and goals of the present study
- Method: tomography
- Application to high-resolution spectra of a red supergiant star  $\mu$  Cep
- Application to 3D radiative-hydrodynamics simulations
- Conclusions and future plans

# Red supergiant stars

- <u>Mass:</u> 9-25 M⊙
- <u>Teff:</u> 3450-4100 K
- log g: between -1 and 1
- <u>Radius:</u> up to 1500 R⊙
- <u>Luminosity:</u> 20000-300000 L⊙

(Levesque 2005)

- Extended atmospheres
- Few large convective cells
- Complex velocity fields which affect spectral lines
- Irregular photometric variations



Betelgeuse H band

Haubois et al. (2009)

Antares K band

Ohnaka et al. (2017)



## Red supergiant stars



#### Kiss et al. (2006) ⇒ two photometric periods:

- short (few hundred days) ⇒ convection? pulsations?
- long (few thousand days) ⇒ binarity? magnetic field?

## Red supergiant stars



#### Kiss et al. (2006) $\Rightarrow$ two photometric periods:

- short (few hundred days) ⇒ convection? pulsations?
- long (few thousand days)  $\Rightarrow$  binarity? magnetic field?

μ Сер

- Teff = 3700 K (Levesque 2005) 3750 K (Josselin & Plez 2007)
- $\log g = -0.5$  (Levesque 2005) -0.36 (Josselin & Plez 2007)
- $Mass_{init} = 25 \text{ M}\odot$  (Josselin & Plez 2007)
- Radius = 1420 R $\odot$  (Levesque 2005) 1258 R $\odot$  (Josselin & Plez 2007)
- Diameter = 14.11 ± 0.6 mas (K band, Perrin et al. 2005)

- Short photometric period = 860 d
- Long photometric period = 4400 d

3D RHD CO5BOLD (Freytag et al. 2012) simulation "st35gm04n38"

- represents effects of convection
- Teff = 3414 ± 17 K
- $\log g = -0.39 \pm 0.01$
- Mass = 5 M⊙
- Radius = 582 ± 5 R⊙
- high-resolution
- the most appropriate simulation

#### construction of 1D synthetic spectrum

-> 1D MARCS (Gustafsson et al. 2008) model atmosphere-> radiative transfer code TURBOSPECTRUM (Plez 2012)

#### construction of 1D synthetic spectrum

-> 1D MARCS (Gustafsson et al. 2008) model atmosphere (static!)
 -> radiative transfer code TURBOSPECTRUM (Plez 2012)

#### <u>computation of the depth of formation of spectral lines</u>

-> contribution function to the line depression (CFLD) (Albrow & Cottrell, 1996)

$$CF(log(\tau_0)) = \ln(10)\frac{\tau_0}{\kappa_0} \int_0^1 \kappa_l (I_c - S_l) e^{-\tau/\mu} d\mu$$

$$d\tau = \kappa \rho dz$$



#### <u>construction of</u> <u>numerical masks</u> minima of the depth function keep only atomic lines



#### • <u>construction of</u> <u>numerical masks</u>

minima of the depthfunctionkeep only atomic

lines







## μ Cep: observations

- HERMES spectrograph (MERCATOR telescope, La Palma, Spain)
- Resolution: 85 000
- 85 high-resolution spectra with S/N ~ 100
- time span of 2200 days

## μ Cep: radial velocities

#### **Cross-correlation functions (CCFs)**



outer

## μ Cep: effective temperatures

#### Computation of the band strength index (Van Eck et al. 2017):

$$B = 1 - \frac{(\lambda_{C,f} - \lambda_{C,i})}{(\lambda_{B,f} - \lambda_{B,i})} \frac{\int_{\lambda_{B,i}}^{\lambda_{B,f}} F_{\lambda} d\lambda}{\int_{\lambda_{C,i}}^{\lambda_{C,f}} F_{\lambda} d\lambda}$$

| Band | $\lambda_{B,i}$ | $\lambda_{B,f}$ | $\lambda_{C,i}$ | $\lambda_{C,f}$ |
|------|-----------------|-----------------|-----------------|-----------------|
| TiO  | 5847.0          | 5869.0          | 5800.0          | 5847.0          |
| TiO  | 6159.0          | 6180.0          | 6067.0          | 6119.0          |
| TiO  | 6187.0          | 6198.0          | 6067.0          | 6119.0          |
| TiO  | 7054.0          | 7069.0          | 7030.0          | 7050.0          |
| TiO  | 7125.0          | 7144.0          | 7030.0          | 7050.0          |



⇒ Teff for µ Cep (consistent with 3700 K from Levesque 2005 and 3750 K from Josselin & Plez 2007)



## Betelgeuse

#### Gray (2008): hysteresis loop between T and RV for Betelgeuse ⇒ convection cells



line depth ratio (T indicator)



Short photometrical period ~ 400 d (Kiss et al. 2006)



t1: 736 days



860 days!



# **1. Following Gray (2008), hysteresis loop may reveal convection**



# **1. Following Gray (2008), hysteresis loop may reveal convection**

# **2. Convection may be responsible for the short-period photometric variations**

#### **3D RHD simulation**



### 3D RHD simulation: velocity



#### 3D RHD simulation: temperature



#### **Observations vs 3D simulation**



### **Observations vs 3D simulation**



- similar qualitative behavior
- pointing at convection which may be responsible for the photometric variations

## Conclusions

#### The tomographic method was applied to:

- 1. a large sample of the high-resolution spectra of  $\mu$  Cep
- 2. snapshots from the 3D RHD simulation
- ⇒ behavior in the temperature-velocity plane is very similar

# Short-period photometric variations can probably be accounted for by convection.

#### work in progress.....

**NEXT STEPS:** Application of the tomographic method to time-series of high-resolution spectra of a sample of RSG stars



# Thank you!

## Scaling relations: test

 $\log(x_{Tremblay}) = 1.75 \log[T_{eff} - 300 \log(g)] - \log(g) + 0.05[Fe/H] - 1.87$  $\log(x_{\text{Trampedach}}) = (1.321 \pm 0.004) \log(T_{\text{eff}}) - (1.0970 \pm 0.0003) \log(g) + (0.031 \pm 0.036)$  $log(x_{Freytag}) = log(T_{eff}) - log(g) - log(\mu) + 0.92$ ;  $\mu = 1.3$  g mol<sup>-1</sup>  $\Rightarrow$  t = 2 $\pi$  t<sub>decay,Tremblay</sub>  $t_{decay,Tremblay} = 2.08 \text{ g}^{-1} (T_{eff} - 300 \log(g))^{1.75} 10^{0.05[Fe/H]}$ Tremblay et al. (2013), Trampedach et al. (2013), Freytag et al. (1997) Tremblay Trampedach Tremblay Freytag 14  $\Delta \pi^1 Gru$ 3  $\log q = -0.4$  $\log q = -0.4$ μ Cep 12  $\pi^1$  Gru 2 μ Cep log t [days]  $[\mathbf{m}] \mathop{\mathrm{x}}\limits_{8} \mathbf{m}$ 0 -1Sun Sun 6 -2loa a = 4.4  $\log q = 4.4$ -34 + 3.93.8 3.7 3.5 3.4 3.8 3.6 3.7 3.6 3.5 3.4 3.9  $\log T_{\rm eff} [K]$ log T<sub>eff</sub> [K]

 $\pi^1$  Gru: Paladini et al. (2018), Nature



# 3D RHD simulation: velocity



Kravchenko et al. (in prep)

Table 2. Properties of the tomographic masks.

| Mask | $\log 	au_0  \operatorname{limits}^*$ | number of lines |
|------|---------------------------------------|-----------------|
| C1   | $-1.0 < \log \tau_0 < 0.5$            | 419             |
| C2   | $-2.0 < \log \tau_0 < -1.0$           | 1750            |
| C3   | $-3.0 < \log \tau_0 < -2.0$           | 1199            |
| C4   | $-4.0 < \log \tau_0 < -3.0$           | 433             |
| C5   | $-5.0 < \log \tau_0 < -4.0$           | 378             |

\*  $\tau_0$  is the reference optical depth computed at  $\lambda = 5000$ Å.

Kravchenko et al. (in prep)

## Can tomography correctly recover the velocity field?

- cross-correlation functions (CCFs) computed from the synthetic snapshot spectrum

- velocity distribution from the same snapshot (green histograms)

Good agreement







## **3D RHD simulation**



![](_page_33_Figure_1.jpeg)

#### Josselin & Plez (2007) → no line doubling

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

#### $M_{bol} = -8.88$ from Josselin & Plez (2007)

Evolutionary tracks from Eckström et al. (2012)

![](_page_35_Figure_3.jpeg)

Kravchenko et al. (in prep)

![](_page_36_Figure_1.jpeg)

**Fig. 5.** Black dashed line: sequence of CCFs obtained from a V Tau spectrum (JD 2451093.5) using masks of Alvarez et al. (2001a; their Fig. 18). Red line: the CCF profiles obtained from the same spectrum using masks with identical  $\log \tau$  limits but built using maxima of the CFLD, as described in Sect. 2.2. Green line: CCF profiles obtained from the same spectrum using masks built from Eq. (4) in Sect. 2.4.

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

**Fig. 14.** Left panel:  $V_z$  as a function of the reference optical depth for the ray 1 of the 3D simulation. *Middle panel*: distribution of formation depths of lines contributing to the mask C6 for the ray 1 weighted (*b*) and not weighted (*a*) by the CFLD. *Right panel*: CCF obtained by cross-correlation of the synthetic spectrum [*with* (black solid line) and *without* (black dashed line) including the velocity field in the 3D simulation] for the ray 1 of the 3D snapshot with the mask C6. Green bars show the distribution of velocities corresponding to formation depths of lines contributing to the mask C6.

### Schwarzschild scenario

![](_page_39_Figure_1.jpeg)

**Fig. 3** The CCFs of the Mira Z Oph at phase 0.08 (1998, August 05-06) obtained with the tomographic masks. The set of tomographic masks used for Z Oph was constructed from a synthetic spectrum at  $T_{\text{eff}} = 3500$  K and  $\log g = 0.9$  (see [3] for details). Note how the shape of the CCFs evolve from the innermost layer (involving ascending matter only, hence C1 exhibits a single blue peak) to the outermost layer (involving mostly matter falling in, hence C8 exibits predominantly a red peak). This spatial sequence of line doubling reflects the presence of a shock wave in the line-forming region, with the shock front being centered on the layer probed by the mask C5.

Jorissen et al. (2015)