

Synchrotron radiation maps from relativistic jet simulations

Dimitrios Millas^{1,} O. Porth², R. Keppens¹ Z. Meliani³

(1) CmPA, Department of Mathematics, KU Leuven
(2) Institut für Theoretische Physik, Goethe-Universität, Frankfurt
(3) LUTH, Observatoire de Paris – Meudon

FNRS Contact group meeting September19^{th,} 2017 Brussels, Belgium

Outline

- Motivation (two-component jets & observations)
- Simulations of two-component jets
- Emission from astrophysical jets
- Synchrotron maps of simulated jets
- Summary & future work

Astrophysical jets

- A very common feature in the universe
 - Different scales (AU to kpc YSO to AGN)
 - Different environments (stellar to galactic)
 - Different origin (but most likely some kind of accretion always present)
 - Different velocities (~100 km/s γ ~100)
 - Different energy output (up to 10^{51} ergs/s)
- Main categories:
 - Young stellar objects (YSO jets)
 - Gamma ray bursts (GRBs)
 - Microquasars (accreting binary systems)
 - Active galactic nuclei (AGN jets)
- Acceleration (HD v MHD v GRMHD + radiation), collimation (self-collimation, role of environment,...)

Two-component jets ?

- Indications: brightening, variability in TeV,...
- Variability in TeV:
 - high γ
 - ultra relativistic bulk motion of the jet
- Radio observations of pc-scale structure:
 - broad, slow (but relativistic) motion
- Sometimes (?) :
 - Fast, light inner jet
 - Slow, heavier outer jet
- Stability ?

Relativistic MHD simulations

- Relativistic module of grid adaptive, MPI-AMRVAC code
- Use 3 levels of AMR to resolve regions of interest (interfaces)
- Base resolution 128², effective 512²
- Dimensions: -0.3pc<x,y<0.3pc
- GLM method to control divergence of \vec{B}
- Duration: 3 rotations of inner jet or ~190 yrs
- VSC cluster (Muk, BrEniac)

Magnetic field configuration

•
$$B_{\varphi}(r) = \begin{cases} B_{\varphi,in} \left(\frac{r}{r_{in}}\right)^{a_{in}/2}, & r \leq r_{in} \\ B_{\varphi,out} \left(\frac{r}{r_{in}}\right)^{a_{out}/2}, & r_{in} < r < r_{out} \end{cases}$$

$$\alpha_{in} = 0.5, a_{out} = -2$$

•
$$B_z(r) = \begin{cases} B_{z,in}, & r \le r_{in} \\ B_{z,out}, & r > r_{in} \end{cases}$$

- No discontinuity at the interface, $B_{\phi,in} = B_{\phi,out}$
- B_{φ,in} defined by fixing the magnetization at r=r_{in} (σ = B²_φ/γ²ρ)
 Use values corresponding to kinetically dominated jets (σ < 1), σ_{max} =0.1

σ

t = 1 rotation

Millas et al., 2017, MNRAS

$\sigma = 0.001$

 $\sigma = 0.01$

 $\sigma = 0.1$

t = 2 rotations

Millas et al., 2017, MNRAS

 $\sigma = 0.001$

 $\sigma = 0.01$

 $\sigma = 0.1$

t = 3 rotations

Millas et al., 2017, MNRAS

Intermezzo: Emission from AGN

- Mostly **non-thermal**
- Presence of magnetic field → Synchrotron
- Photon field → Inverse Compton

Intermezzo: Emission from AGN

- Mostly **non-thermal**
- Presence of magnetic field → **Synchrotron** (true emission)
- Photon field → Inverse Compton (no "new" photons!)

Intermezzo: Emission from AGN

- Mostly **non-thermal**
- Presence of magnetic field → Synchrotron (true emission)
- Photon field → **Inverse Compton** (no "new" photons!)
- Characteristic signatures in most observations
- $P_{syn} \sim \gamma^2 U_B$, $U_B = B^2/8\pi$

SED of Cen A, Mkn 421 (Ghisellini et al. 2005)

Synchrotron

SED of Cen A, Mkn 421 (Ghisellini et al. 2005)

Synchrotron Inverse Compton

SED of Cen A, Mkn 421 (Ghisellini et al. 2005)

Polarization

- Plane-wave solution of Maxwell's equations in vacuum with arbitrary polarization
- \vec{E} can be expressed as: $\vec{E} = Re[E_l\vec{l} + E_r\vec{r}]$
- Direction of propagation: $\vec{n} = \vec{r} \ge \vec{l}$
- Geometrical shape that \vec{E} creates while propagating

Stokes Parameters

- Four quantities that fully define the electric field
- These are usually expressed as:
 - $I = E_l E_l^* + E_r E_r^*$
 - Q= $E_l E_l^* E_r E_r^*$
 - U= $E_l E_r^* + E_r E_l^*$
 - $V = i(E_l E_r^* + E_r E_l^*)$

Stokes Parameters

- Four quantities that fully define the electric field
- These are usually expressed as:
 - $I = E_l E_l^* + E_r E_r^*$
 - Q= $E_l E_l^* E_r E_r^*$
 - U= $E_l E_r^* + E_r E_l^*$
 - $V = i(E_l E_r^* + E_r E_l^*)$
 - *I* : intensity, Q,U: orientation of the ellipse, V: semi-major axis

Stokes Parameters

- Four quantities that fully define the electric field
- These are usually expressed as:
 - $I = E_l E_l^* + E_r E_r^*$
 - Q= $E_l E_l^* E_r E_r^*$
 - U= $E_l E_r^* + E_r E_l^*$
 - $V = i(E_l E_r^* + E_r E_l^*)$
 - *I* : intensity, Q,U: orientation of the ellipse, V: semi-major axis

•
$$I^2 = Q^2 + U^2 + V^2$$

Jets & Emission: What is known (?)

- General trends:
 - Roughly bimodial distribution of EVPA (// or ⊥ to the jet direction)
 - EVPAs generally follow the jet orientation
 - EVPAs experience "jumps" from orthogonal to parallel
 - Faraday rotation frequently observed
- Due to:
 - Large scale magnetic fields + shocks in the jet
 - Large scale helical magnetic fields

Examples

4cm intensity for BL Lac 1749+701 (left) and 6cm intensity for BL Lac 1418+546 (Lyutikov et al. 2005)

Ray-tracing

- Create a "ray-box" on the emitting "object"
- Calculate the Stokes parameters
- Solve the radiation transfer equation

$$\frac{dI}{dl} = \mathcal{E} - \mathbf{A} \cdot \mathbf{I}$$

(or in the unpolarized case) $\frac{dI_{\nu}}{dl} = \varepsilon_{\nu} - \kappa_{\nu}I_{\nu}$

Assumptions

- Optically thin emission (no absorption, $\kappa_v = 0$)
- Circular polarization ignored (small % in observations)
- Mask the emitting region: use γ and ρ of final state
 - Consider emission from inner jet only
 - No Faraday rotation (polarization plane: constant)
- Power law for e⁻ distribution, $dn' \sim E'^{-p} dE'$, p = 2.4
 - Emissivity: $\varepsilon_{\nu} \sim \nu^{(p-1)/2}$
- Small viewing angle $\theta_{obs} \sim 5^{\circ}$, v = 15GHz

Calculations

- Total Intensity: Stokes I
 Also the polarized intensity
- Intensity distribution across the jet
- EVPAs

$$\cos(2\chi) = \frac{Q}{\sqrt{Q^2 + U^2}}, \sin(2\chi) = \frac{U}{\sqrt{Q^2 + U^2}}$$

• Polarization fraction $\Pi = \frac{\sqrt{Q^2 + U^2}}{I}$

Total Intensity (final state)

Intensity profile (final state)

Polarized Intensity (initial state)

Polarized Intensity (final state)

Close to theoretical max $\Pi \sim 70\%$ (for p = 2-3) for **ordered** fields

Results

- Stability has an effect on the emission pattern
 - B field remains ~ helical in stable cases
 - Mixing important (extended emitting region in unstable cases)
- General tendencies present also in our radiation maps
 - EVPA mostly **perpendicular** to the jet axis
 - EVPA "jumps", mostly near the interface (for larger θ_{obs})
- Max polarization fraction $\Pi \sim 70\%$
 - in $\sigma=0.001$ (as B_p dominant)
 - in $\sigma = 0.1$ (sensitive to mask, θ_{obs} !)

Next steps...

- Include absorption & check spectral index
 - Absorption modifies p !
 - Regions with different optical depth $\tau < 1$, $\tau \sim 1$, $\tau > 1$
 - Thermal absorption vs other mechanisms (e.g. SSA)
- Different masking of emitting regions
 - Changes in Π
 - Use outer jet as "Faraday sheath"
- Examine different distributions (e.g. Kappa?)
- Implement Inverse Compton & SEDs ?