The Effect of Angular Opening on the Dynamics of Relativistic Jets in Hydrodynamics

Remi Monceau-Baroux

Centrum voor Plasma-Astrofysica K.U.Leuven

Bruxelles, 14 May 2012

3 Discussion of the results

4 Conclusion

LEUVEN

What? - Jet from active galactic nucleus (AGN)

- Originates from a massive object like a massive star or a black hole.
- The accretion disk of a massive stellar object releases matter in the form of winds
- Many studies are made to explain how a jet can arise from these winds (see [Blandford & Payne 1982][Bogovalov and Tsinganos 2004])
- Magnetic and pressure driven collimation.

Why? - Some (good) reasons to study AGN jets

- Scenario for galaxy cluster formation [Dubois et al 2010]
- Predicted galaxy distribution does not match the observed one
- Necessity for a retroactive phenomenon for injection of energy

Opening angle - Direct observations

Figure: Distribution of intrinsic opening angle [Pushkarev & Kovalev 2011]

Figure: 0.3 to 5.0 keV CHANDRA image of NGC 4261 (3C 270) after subtracting the diffuse component. The contours correspond to radio emission from a 4.9 GHz VLA observation [Zezas et al 2005]

- Interaction with the ISM through front shock ex: Density jump [Meliani et al 2008]. Kinetic to thermial energy.
- Heating by shocks: internal deceleration of the jet by recolimation shocks. Heating of the ISM.
- Rayleigh Taylor and Kelvin Helmholtz instabilities: mixing of jet and surroundings of the jets materials.

Introduction	Framework	Results	Conclusion
Outline			

1 Introduction

3 Discussion of the results

E

Results

Equations of Relativistic Hydrodynamics

Quations of Relativistic Hydrodynamics
Q Continuity Equation

$$\frac{\partial \rho \gamma}{\partial t} + \vec{\nabla} \cdot \rho \gamma \vec{v} = 0 \qquad (1)$$
Q Momentum Equation

$$\frac{\partial \vec{S}}{\partial t} + \vec{\nabla} \cdot (\vec{S}\vec{v}) + \vec{\nabla} \rho = 0 \qquad (2)$$
Q Energy Equation

$$\frac{\partial \tau}{\partial t} + c^2 \vec{\nabla} \cdot (\vec{S} - \rho \gamma \vec{v}) = 0 \quad (3)$$

Momentum Density

$$\vec{S} = \frac{h}{c^2} \gamma^2 \rho \vec{v} \quad (4)$$

O Specific Enthalpy

$$h = c^2 + \epsilon + \frac{p}{\rho} \quad (5)$$

Inergy Density

$$\tau = \rho h \gamma^2 - p - \rho \gamma c^2$$
(6)

Mathews approximation to the Synge gas equation

$$p = \left(\frac{\Gamma - 1}{2}\right)\rho\left(\frac{e}{m_p} - \frac{m_p}{e}\right) \tag{7}$$

Which gives a local effective polytropic index

$$\Gamma_{eff} = \Gamma - \frac{\Gamma - 1}{2} \left(1 - \frac{m_p^2}{e^2}\right) \tag{8}$$

Code used for the simulations MPI-AMRVAC

- ${\small \bigcirc} \ \ {\rm homes.esat.kuleuven.be}/{\sim} \ {\rm keppens}$
- A code to solve conservation equations of the form

$$\partial_t \vec{U} + \vec{\nabla} \cdot \vec{F}(\vec{U}) = \vec{S}_{phys}(\vec{U}, \partial_i \vec{U}, \partial_i \partial_j \vec{U}, \vec{x}, t)$$
 (9)

- **③** Different modules available (ex: HD, MHD, SRHD)
- Different solvers available (ex: TVDLF, HLLC)
- Possibility to use libraries to add more physics (ex: gravity, Optical thin radiative cooling)

Introduction

Framework

Results

Adaptive Mesh Refinement and Message Passing Interface

Figure: Example of simulation with adaptive mesh refinement

Adaptive Mesh Refinement - AMR

- Improves computation time by only refining the grid where needed
- Flags are set on different variables
- Typical use of 5 to 8 levels of refinement

Message Passing Interface - MPI

- The code is using MPI for massive parallelisation
- Division of the space in blocks
- Finite number of blocks per CPU
- Typical use of 20 000 blocks

12 / 25

Computation - some figures

- Base resolution of 300x192, total 5 levels: effective resolution of 4800x3072 (around 2 000 000 grid points at end of simulation)
- Runs simulation: 16 processors for 24 hours
- Without AMR: over a week

Dimensions and Boundary conditions

Dimension

- Simulations in 2D
- 2 Axi-symmetry

Boundary conditions

- 2 transparent (continuous) boundaries
- 2 1 axi-symmetry
- 1 special boundary: source of the jet

Recapitulation of input parameters

Simulation	Density	Opening	Domain	Density
	ratio	angle	size (pc)	profile
		(degrees)		
А	0.01	5	20x5	uniform
В	0.0001	5	20x5	uniform
С	0.018	0	20x5	King
D	0.018	5	20x5	King
E	0.018	10	20x5	King
F	0.1	0	20x5	King II
G	0.1	5	20x5	King II
H	0.1	10	20×5	King II

Table: Parameters for the simulations.

Introduction	Framework	Results	Conclusion
Outline			

1 Introduction

2 Framework

3 Discussion of the results

Parametric study - Influence of the opening angle

- Comparison of 10 degrees of opening angle (Right -Model E) and 0 degree opening angle (Left - Model C)
- Influence of the opening angle on size of the mixing region and shocked ISM
- Axial reach of the jet

Density variation along the symmetry axis

- Shorter pulsation for higher opening angle
- Possible site for particles accelerations: X-Rays brightening scenario

Figure: Image of M87

Results

Conclusion

Formation of a structured beam

- The head of the jet pushes the ISM over a wider radial distance than the radius of the beam
- Formation of a low density layer with a rarefaction wave propagating radially
- Formation of a two components structure for the beam

Results

Conclusion

Formation of a structured beam

Figure: 1D cut along the radius - 0 degree

Figure: 1D cut along the radius - 10 degree

R. Monceau-Baroux

Bruxelles, 14 May 2012

- High deceleration for a flat density profile due to the density ratio
- Wider angle gives higher deceleration

Parametric study - Energy transfer

- Increased energy transfer for wider opening angle
- Dominance of transfer through shocks in the SISM region for early time

Introduction	Framework	Results	Conclusion
Outline			

1 Introduction

- 2 Framework
- 3 Discussion of the results

- While keeping a collimated beam for the jet we show that an angle at the source of the jet changes the dynamics of the jet.
- As the interaction between the jet and the ISM is more important at the head and in the layer where the instabilities develop, this scenario offers a possible mechanism to re-inject more energy into the ISM, and then, help to explain cluster formation.
- For early time of injection of the jet, the transfer of energy is dominated by shocks heating the ISM.

Results

Conclusion

Welcome to the Third Dimension

Results

Conclusion

Acknowledgement

Special thanks to Rony Keppens, Zakaria Meliani and Allard Jan van Marle Dank u wel