SLOWLY ROTATING B STARS AS A TEST OF SEMI-CONVECTIVE MIXING

By: **Ehsan Moravveji**, IvS, KU Leuven With: Peter Papics & Conny Aerts

30 April, 2014, Royal Observatory of Belgium

Sources of Composition Mixing in Stars

- Convection
- Magnetic Field
- Rotation-induced Mixing
- Overshooting
- <u>Semi-Convection</u>

Occurrence of Semi-Convection (Langer+1983)

We use MESA (Paxton et al. 2011, 2013) to calculate structure and evolution of stars.

Occurrence of Semi-Convection

Evolutionary Effects of Semi-Convection

A Young, Non-Rotating Kepler SPB Star

(Papics et al. 2014)

Earth Seismology vs. Asteroseismology

Dense Grid of MESA+GYRE Models

Parameter	From	То	Stepsize	N	
Mass	3.00	3.30	0.05	7	
α _{sc}	10 ⁻⁶	1		7	
Metallicity	0.010	0.025	0.001	16	
X _c	0.70	0.60	0.001	101	
Total Num.				~74 000	

- MESA: grid parameter range,
- $\circ~$ Using \sim 74 000 input models,
- **GYRE**: theoretical oscillation frequencies.

Is Asteroseismology Sensitive to α_{sc} ?

Yes!

- **MESA**: 3.2 M_{\odot} , Z=0.02, X_c=0.70 - Ref: α_{sc} =0.0 Led4: α_{sc} =10⁻⁴ Led5: α_{sc} =10⁻³
- K2~75 days, BRITE~180 days,
 Kepler~1400 days
- **GYRE:** compute oscillation frequencies

The Physical Parameters of the Best Model

Conclusions

- □ For a non-rotating massive stars, semiconvection influences the evolution,
- Space photometry from (Kepler & CoRoT) can help constraining the semiconvection
- □ From asteroseismic modeling, slow mixing (Ledoux criteria) is preferred over rapid (Schwarzscild) mixing, i.e. $\alpha_{sc} \approx 10^{-3}$.

Occurrence of Semi-Convection

Radiative zones that are Ledoux stable but Schwarzschild unstable undergo a slow mixing with unconstrained time scale

$$\nabla_{ad} < \nabla_{rad} \le \nabla_{L}; \quad \nabla_{L} = \nabla - \nabla_{ad} + \frac{\varphi}{\delta} \nabla_{\mu}$$
$$D_{sc} = \alpha_{sc} \frac{\kappa_{rad}}{6c_{p}\rho} \frac{\nabla - \nabla_{ad}}{\nabla_{L} - \nabla} \quad for \quad 0 \le \alpha_{sc} \le 1$$

For $\alpha_{sc} \rightarrow 1$: Ledoux \rightarrow Schwarzchild

Evolutionary Effects of Semi-Convection

- MESA (Paxton+2011, 2013) models with OPAL opacity tables and Nieva & Przybilla (2012) composition of B stars (X,Z)=(0.710, 0.014).
- All models are 3.2 $M_{\odot}\text{,}$ and Z=0.02
- Schwarzschild track: $\alpha_{ov} = 0.002$
- For Ledoux tracks: $10^{-6} \le \alpha_{sc} \le 1$
- Semi-convection impacts the lifetime and width of main-sequence phase.

Name	Led or Sch?	$lpha_{ m ov}$	$lpha_{ m sc}$	M_{He}	Age
Ref	Led	0.0	0.0	0.972	183
Led1	Led	0.01	10^{-6}	0.967	263
Led2	Led	0.0	10^{-6}	0.971	193
Led3	Led	0.0	10^{-5}	0.971	169
Led4	Led	0.0	10^{-4}	0.970	200
Led5	Led	0.0	10^{-3}	0.969	243
Led6	Led	0.0	10^{-2}	0.970	261
Led7	Led	0.0	10^{-1}	0.972	261
Led8	Led	0.0	1.0	0.971	261
Sch1	Sch	0.002	0.0	0.972	262

