A search for non-thermal X-ray emission in the colliding wind binary Cyg OB2 #8A

Enmanuelle Mossoux et al. 2019 (in preparation)

- 2 X-ray observations of Cyg OB2 #8A
- Search for non-thermal emission from Cyg OB2 #8A
 - 4 Conclusion

- 2 X-ray observations of Cyg OB2 #8A
- 3 Search for non-thermal emission from Cyg OB2 #8A
- 4 Conclusion

Cygnus OB2

Optical, infrared and X-ray composite image

Colliding wind binaries (CWB)

De Becker et al. (2008)

- Kinetic energy of the winds \rightarrow heating up to $10^7 \text{K} \rightarrow$ thermal X-rays;
- Diffusive shock acceleration \rightarrow relativistic particles \rightarrow non-thermal radio;
- UV emission from the stars + relativistic particles = inverse Compton (IC) → non-thermal hard X-rays.

Cyg OB2 #8A (BD+40°4227A, Schulte 8A)

	Primary	Secondary
$P_{ m orb}$ (days)	21.9066 ± 0.0013	
e	0.18 ± 0.03	
T_0 (HJD-2450000)	8005.66 ± 0.62	
ω (°)	207.6 ± 11.9	
$\gamma~({ m kms^{-1}})$	-10.0 ± 2.8	-18.8 ± 3.2
K (km s ⁻¹)	81.8 ± 2.9	102.8 ± 3.6
<i>a</i> sin <i>i</i> (R _☉)	34.8 ± 1.2	43.8 ± 1.5
m sin ³ i (M _☉)	7.6 ± 0.6	6.0 ± 0.5

- 2 X-ray observations of Cyg OB2 #8A
 - 3 Search for non-thermal emission from Cyg OB2 #8A
 - 4 Conclusion

Swift and XMM-Newton observations

Swift: 67 new observations + 6 already analyzed observations XMM-Newton: 5 new observations + 7 already analyzed observations

\Rightarrow Phase-locked variation

NuSTAR observations

2 new observations close to the pericenter

Right Ascension (J2000)

NuSTAR RGB image (red=1.6-5.6 keV, green=5.6-13.6 keV, blue=13.6-21.6 keV)

NuSTAR spectra

2018 August 25 ($\phi = 0.028$)

2018 August 26 ($\phi = 0.085$)

Grouping: SNR=2. Red: FPMA. Black: FPMB. Crosses: background.

 \Rightarrow X-ray emission above 10 keV at $\phi = 0.085$

Cyg OB2 #8A

- 2 X-ray observations of Cyg OB2 #8A
- Search for non-thermal emission from Cyg OB2 #8A

4 Conclusion

Search for non-thermal emission from Cyg OB2 #8A

Search for non-thermal emission from Cyg OB2 #8A

Fitting model: 3 absorbed thermal plasma (APEC) (Cazorla et al. 2014)

- Fit of the 12 XMM-Newton spectra $\rightarrow \kappa T$ =0.34, 0.83 and 2.13 keV and $n_1 = 2.11 \times 10^{-2} \, {\rm cm}^{-5}$
- Interpolating the value of n_2 to the phases of NuSTAR observations
- Fitting n₃ to the NuSTAR spectra

Search for non-thermal emission from Cyg OB2 #8A

Search for non-thermal emission from Cyg OB2 #8A

- Adding a powerlaw component to the NuSTAR spectra at $\phi = 0.085$ $\rightarrow \Gamma < 0$, flux consistent with 0 and fit not significantly improved
- Fit of the XMM-Newton spectra at $\phi = 0.042$ & 0.056 ${\rm AND}$ all the NuSTAR spectra

ightarrow $n_3 = 3.86 imes 10^{-3} \, {
m cm}^{-5}$

• Adding a powerlaw component to the NuSTAR and XMM-Newton spectra

Upper limit on the non-thermal emission

- Computation of the hard X-ray flux reproducing the upper limit count rates observed by INTEGRAL/IBIS for several Γ
- Creation of a model grid (3T + powerlaw) for these Γ and several fluxes
- Comparison of these models with the XMM-Newton spectra at $\phi = 0.042$ & 0.056 and the 4 NuSTAR spectra

Search for non-thermal emission from Cyg OB2 #8A

Predictions on the non-thermal inverse Compton emission

- Improvement of the del Palacio et al. (2016)'s model with an energy-dependent non-thermal particle distribution (Blasi et al. 2005)
- Calculation of the anisotropic IC emission (Cerutti 2007) for the NuSTAR phases

Model parameters: ep_{ratio} = 0.01, χ_{ini} = 3.5 and $\zeta_{\rm B}$ = 10^{-3} and 10^{-4} for model 1 and 2.

 \Rightarrow At E = 10 keV: 10^{-4} times the 1σ upper limit and $\sim 2 \times 10^{-3}$ times the best-fit flux for $\Gamma = 1.5$

- 2 X-ray observations of Cyg OB2 #8A
- 3 Search for non-thermal emission from Cyg OB2 #8A
 - 4 Conclusion

- Revised orbital solution
- Better phase coverage with the X-ray observations
- Improved fitting of the X-ray spectra with a 3T model
- NuSTAR observations up to 30 keV
- Fitting of the spectra close to the periastron with a 3T+powerlaw model
- Better constrain of the upper limit of the non-thermal emission
- Construction of a new model to compute the anisotropic IC emission

Conclusion

Light curve of Cyg OB2 #8A

Conclusion

Hysteresis curve of Cyg OB2 #8A

Conclusion

del Palacio et al. (2016)'s model

