

Neutral gas mass spectrometry on board of ESA's Rosetta and Comet Interceptor missions

Martin Rubin

FNRS Astronomy & Astrophysics Contact Group meeting & Astronomy Day of the Royal Observatory

23 May 2024

What is a comet?

- A comet consists of:
 - Solid materials (~50% we don't know yet!)
 - Dust & dirt
 - Organic material
 - Ices (~50%) (not asteroids)
 - Water (H₂O)
 - Carbon monoxide (CO)
 - Carbon dioxide (CO₂)
 - And much more ...
- The Sun heats up the outer layers
- At low pressures ice vaporizes directly

Asteroid Vesta

What is a comet?

Comet nucleii

9P/Tempel 1 7.6 × 4.9 km Deep Impact, 2005

1P/Halley - 16 × 8 × 8 km Vega 2, 1986

19P/Borrelly 8 × 4 km Deep Space 1, 2001

103P/Hartley 2 2.2 x 0.5 km Deep Impact, 2010

81P/Wild 2 5.5 × 4.0 × 3.3 km Stardust, 2004

Comet orbits

The Rosetta mission to comet 67P/Churyumov-Gerasimenko

To decipher the origin of the solar system, the Earth and life by studying a comet

In analogy to the **hieroglyphs** on the **Rosetta stone.**

Mission goals

- characterization of the nucleus
- determination of its dynamic properties
- surface morphology and composition
- determination of chemical, mineralogical and isotopic compositions of volatiles and refractories in the cometary nucleus
- determination of the physical properties and interrelation of volatiles and refractories in the cometary nucleus
- studies of the development of cometary activity and the processes in the surface layer of the nucleus and inner coma, that is dust/gas interaction
- studies of the evolution of the interaction region of the solar wind and the outgassing comet during perihelion approach.

Date: 06 August 2014 Satellite: Rosetta Depicts: Comet 67P/Churyumov-Gerasimenko Copyright: ESA/Rosetta/NAVCAM OWLT ~ 45 min

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO /INTA/UPM/DASP/IDA

Chury – the rubber ducky

→ COMET 67P/CHURYUMOV-GERASIMENKO'S VITAL STATISTICS

21.4 km³ 2.6 km Volume 1.0 × 10¹³ kg 2.3 km Mass 1.8 km 470 kg/m³ Density 70-80% 1.8 km Porosity 3.3 km 4.1 km 4 Dust/gas ratio 5.3 × 10⁻⁴ D/H ratio Average water vapour production 300 ml/s → June 2014 600 ml/s → July 2014 1200 ml/s > August 2014 MIRO: D/H: ROSINA: shape mode**bIOSI** OSTRIS. VIRUS: ust/gas: GIADA, MIRO t images: NavCam

Rotation period 12.4043 hours

Spin axis:

69.3° Right Ascension

64.1° Declination

52° Obliquity of the comet's rotational axis

X.Y Equatorial axes Spin axis

-93°C to -43°C Surface temperature

-243°C to -113°C Subsurface temperature

6% Average albedo

Rosetta Payload

OSIRIS	Camera	28 kg
ROSINA	Gas Mass Spectrometer	35 kg
COSIMA	Dust Mass Spectrometer	20 kg
GIADA	Dust Flux Analyzer	4.5 kg
MIDAS	Dust Microscope	5.5 kg
VIRTIS	Infrared Spectrometer	23 kg
MIRO	Microwave Experiment	16.2 kg
ALICE	Ultraviolet Spectrometer	2.2 kg
RPC	Plasma Instruments: Magnetic Feld, Electrons, (Energetic) Ions	5.7 kg
RSI	Radio Experiment	0.0 kg
CONSERT	Comet Nucleus Sounder	2.0 kg
LANDER PHILAE	With 10 Experiments	100 kg

Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)

... measured gas density and composition in the atmosphere of the comet

Ion Source and Transfer Optics

Zoom Optics

F_z=qvB=mv²/r qB=mv/r=p/r

Permanentmagnet

 $F_z = qE = mv^2/r$ =2E_{kin}/r Electrostatic Deflection

ROSINA data

First observations in August 2014

ESA/Rosetta/ROSINA/UBern, BIRA, LATMOS, LMM, IRAP, MPS, SwRI, TUB, UMich

Illumination as seen from Rosetta

Major species: H_2O , CO_2 & CO

Hässig et al., 2015

Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Was ist Restlicht/Streulicht von Staub und was Sterne?

Star Tracker A CCD Read-Out: 2015-07-06

Star Tracker A CCD Read-Out acquired on 6 July 2015 between 06:09 and 09:01 UTC

Distance: 159km Phase Angle (of CG): 89°

Pointing during that period: inertial

Field of View: 16.5°x16.5°. Pixel Size: 58" Integration Time: 1s (operationally: 0.1s)

Sub-Frame Size: 205x15 Pixel. Number of Sub-Frames: 345 Integration Time: 1second Frequency: every 30seconds (values to be confirmed)

Was ist Restlicht/Streulicht von Staub und was Sterne?

Star Tracker A CCD Read-Out: 2015-07-06

Star Tracker A CCD Read-Out acquired on 6 July 2015 between 06:09 and 09:01 UTC

Distance: 159km Phase Angle (of CG): 89°

Pointing during that period: inertial

Field of View: 16.5°x16.5°. Pixel Size: 58" Integration Time: 1s (operationally: 0.1s)

Sub-Frame Size: 205x15 Pixel. Number of Sub-Frames: 345 Integration Time: 1second Frequency: every 30seconds (values to be confirmed)starting from the chemical composition

H H-Ċ-COOH NH2 Glycine

Let each species tell its own tale

Evolution of life

Evolution of the material

Protoplanetary nebula

Starting conditions Chemistry Physical conditions (d, T, t)

Solar system

→ THE COMETARY ZOO: GASES DETECTED BY ROSETTA

THE LONG CARBON

CHATNS

Methane Ethane Propane Butane Pentane Hexane Heptane

THE ALCOHOLS

Methanol Ethanol Propanol **Butanol** Pentanol

THE TREASURES WITH A HARD CRUST

Sodium Potassium Silicon Magnesium

www.esa.int

THE AROMATIC RING COMPOUNDS

Benzene Toluene Xylene Benzoic acid Naphtalene

THE VOLATILES Nitrogen Oxygen

Hydrogen peroxide Carbon monoxide Carbon dioxide

THE "SALTY" BEASTS

Hydrogen fluoride Hydrogen chloride Hydrogen bromide Phosphorus Chloromethane

THE KING OF THE ZOO Glycine (amino acid)

THE "MANURE SMELL" MOLECULES

Ammonia Methylamine Ethylamine

THE "SMELLY" MOLECULES Hydrogensulphide Carbonylsulphide Sulphur monoxide Sulphur dioxide Carbon disulphide

THE "EXOTIC" MOLECULES

Acetic acid Acetaldehyde Ethylenglycol Propylenglycol Butanamide

THE "POISONOUS" MOLECULES

Acetylene Hydrogen cyanide Acetonitrile Formaldehyde

THE "SMELLY AND COLOURFUL"

Sulphur Disulphur Trisulphur Tetrasulphur Methanethiole Ethanethiol Thioformaldehyde

THE MOLECULE IN DISGUISE Cyanogen

European Space Agency

Credits: Based on data from ROSINA

THE BEAUTIFUL

Argon

Krypton

Xenon

AND SOLITARY

Relative abundances - Connection to the ISM

Drozdovskaya et al., 2019 from PILS survey (see also Bockelée-Morvan et al. 2000)

The O₂ story

- Significant amounts of O₂ found at 67P, ~3.8% w.r.t. H₂O, lack of H₂O₂ and HO₂ (Bieler et al., 2015)
- O₂ proportional to H₂O → O₂ is very well embedded in the water ice matrix
- O₂ cannot be formed in the protosolar nebula by radiolysis
- O₂ was formed in the star forming regions / molecular clouds either by radiolysis (Mousis et al., 2016), gas phase chemistry (Taquet et al., 2016), dismutation of H₂O during sublimation (Dulieu et al., 2017)
- However, difference in O-isotopes favors an origin of O₂ not from H₂O.

Presence of highly volatiles

The presence of N_2 , CO, CH₄, ... suggests

- that comets such as 67P were never warm
- that comets cannot have been part of a big object (heating by radioactivity)
- that comets formed around 25 K (no Ne detected).

Caveat: to what extent are these (minor) species trapped in CO₂ and H₂O?

Where is the nitrogen?

• Lack of N in comets known since the Giotto flyby at 1P/Halley

(Geiss, 1987)

Where is the nitrogen? – Ammonium salts

- Ammonium salts (Altwegg et al. 2020, 2022; Quirico et al. 2016, Poch et al. 2021)
- All sublimation products of a number of different ammonium salts found in ROSINA data
 - Ammonium hydrosulphide: $NH_4^+SH^-$ ($T_{sub} = 168 \text{ K}$)
 - Ammonium chloride: NH₄⁺Cl⁻
 - Ammonium cyanide: NH₄⁺CN⁻
 - Ammonium cyanate: NH₄⁺OCN⁻
 - Ammonium formate: NH₄⁺HCOO⁻

$$\begin{bmatrix} H \\ I \\ H \end{pmatrix}^{+} \begin{bmatrix} H \\ H \end{bmatrix}^{+} \begin{bmatrix} H \\ H \end{bmatrix}^{-} \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{-} \longrightarrow NH_{3} + CH_{2}O_{2}$$

• Ammonium acetate: $NH_4^+CH_3COO^-$ ($T_{sub} = 326 \text{ K}$)

Organics m>100 Da

Evidence for a continuum of cometary organics between

volatile and refractory

Occam's razor approach:

Chain-based, cyclic, and aromatic species (6:3:1), no polymers (Hänni et al., 2022)

Refractory elements in the gas phase

- Na, Si, Ca, K detected in the gas phase early in the mission, most likely associated to sputtering by solar wind (Wurz et al. 2015)
- Same elements plus Fe detected close to perihelion while solar wind absent/deflected (Behar et al., 2017) ≠ sputtering! cf. Manfroid et al. 2021, Guzik & Drahus 2022

(Rubin et al. 2022)

Isotopes in H₂O

Xenon isotopes / delivery to Earth

Reproduce Xe isotope ratio of terrestrial atmosphere by mixing

- 22±5% cometary Xe with meteoritic Xe
- and accounting for atmospheric escape/ fractionation

(Marty et al. 2017)

U-Xe

U-Xe

U-Xe

Meteoritic Xe **J-Xe**

Xenon isotopes / delivery to Earth

Comet Interceptor

- ESA's new F-class mission
- Launch in 2029 to a yet to be identified dynamically new comet or possibly even an interstellar object
- A: main spacecraft
 - Passes sunward of comet at ~1000 km ('safe' distance)
 - Data relay for other spacecraft
 - Propulsion + communication
 - Main payload to ensure results even if other spacecraft fail
- B1: inner coma
 - Targeted to pass through inner coma
 - In-situ sampling, coma imaging
- B2: nucleus + coma
 - Targeted close to the nucleus (but unlikely to actually hit it)
 - In-situ sampling, nucleus + coma imaging

Comet Interceptor

S/C A (ESA) CoCa, MIRMIS, DFP-A, MANiaC

COMET . INTERCEPTOR

S/C B2 (ESA) OPIC, EnVisS, DFP-B2

Mass Analyzer for Neutrals in a Coma (MANiaC)

- Consortium: Univ. of Bern (lead), IAA Granada, IWF Graz, IRAP Toulouse, CTI Piaseczno, DLR Berlin
- Time-Of-Flight mass spectrometer (SHU) measures relative abundances coma molecules
- Neutral Density Gauge (NDG) measures absolute densities along trajectory
- Mass:~ 6.8 kg (CBE)
- Power: 35 W at encounter
- Data volume 7 Gbit for post-encounter compression/download and, if available, real-time transmission in low resolution.

Advances with Comet Interceptor

- Visit for the first time a dynamically new comet, if
- possible even an interstellar object
- Perform multi-point measurements

MANiaC science goals

- Monitoring the major volatiles H₂O, CO, and CO₂ in the coma to study the target's activity and associated gas mass loss rate, extended sources, etc.
- Deriving the D/H ratio in H_2O to study the provenience of the water ice in the comet.
- Assess the amount of key volatiles such as O₂ and highly volatile species in a DNC. Relative abundances of highly volatiles.
- Obtain an inventory of (complex) organic molecules and other species important in pre-biotic chemistry
- Measurement of icy grains' composition should some be collected in the ion source

- Mission 'parked' at stable Lagrange point L2 after launch with Ariel
- Waits for up to 2-3 years for new target discovery

 Target discovered by a ground-based observatory (up to 3 years)

e.g., a dynamically new comet or an interstellar comet

Orbit computed and ecliptic crossing point predicted

• Comet Interceptor leaves L2 to intercept comet's path

• Encounter with comet close to the ecliptic plane

• Encounter

Thanks for your attention!

