17th Meeting of the FNRS Contact Group Astronomy \& Astrophysics
Astronomy Day of the Royal Observatory of Belgium
11/10/2016

Formation of giant planetary systems: Planet-planet interactions during the gas phase

S. Sotiriadis*, A.-S. Libert naXys, Department of Mathematics, University of Namur

Joint work with B. Bitsch (Lund Observatory)
A. Crida (Nice Observatory)

Planetary system architecture

- Observations: the orbits of extrasolar systems are more various than the circular and coplanar ones of the Solar system

Planetary system architecture

- Observations: the orbits of extrasolar systems are more various than the circular and coplanar ones of the Solar system

In particular, RV-detected giant planets:

- Very diversified eccentricities

Eccentricity

Semi-major axis vs Eccentricity / $\mathrm{M}_{\mathrm{p}}>0.6 \mathrm{M}_{\text {Jupiter }}$

Planetary system architecture

- Observations: the orbits of extrasolar systems are more various than the circular and coplanar ones of the Solar system

In particular, RV-detected giant planets:

- Very diversified eccentricities
- Mutual inclinations unknown

Inclinations: some clues

Comparison of Solar System with Upsilon Andromedae System
u Andromedae System
Mutual Inclination between c \& d orbits $\sim 30^{\circ}$

Upsilon Andromedae System

Polar view

Oblique view

Planetary system architecture

- Observations: the orbits of extrasolar systems are more various than the circular and coplanar ones of the Solar system

In particular, RV-detected giant planets:

- Very diversified eccentricities
- Mutual inclinations unknown
- GOAL: How to explain the formation of the RV-detected giant planet systems?

Planet formation

Gas giants form:

- Outside the "snow-line"
- Circular and co-planar orbits

Beyond the snow line, where water freezes, ices add to planet-building material, leading to the large Jovian planets

Late-stage formation of giant planetary systems

- STAGE I / During the disc phase: Giant planet migration (Type II) (e.g. Lin \& Papaloizou 1986a, Kley 2000, Nelson et al. 2000)
\rightarrow Eccentricity and inclination excitations
(e.g. Thommes \& Lissauer 2003, Libert \& Tsiganis 2009, Teyssandier \& Terquem 2014)
- STAGE II / After the disc phase: Planet-planet scattering
(e.g. Weidenschilling \& Marzari 1996, Ford \& Rasio 2008, Juric \& Tremaine 2008, Chatterjee et al. 2008)
\rightarrow Eccentricity and inclination excitations (e distribution fits to observations) BUT \rightarrow Initial conditions problem
- Combined action of both previous mechanisms: Planet-planet interactions DURING migration in the protoplanetary disc (e.g. Adams \& Laughlin 2003, Matsumara et al. 2010, Libert \& Tsiganis 2011)

Model description

Previous n-body studies
$1^{\text {st }}$ order approximation for eccentricity damping
, $\frac{\dot{e}}{e}=-K \frac{\dot{a}}{a}$
4
No effect of the disc on the Inclinations of the planets

$$
\frac{\dot{I}}{I}=?
$$

Model description

Bitsch et al. 2013: 3D Hydrodynamical simulations

Averaged torques acting on the planet in every orbit
Damping formulae for e and i (valid for e<2/3, strong damping) Suitable for \boldsymbol{n}-body simulations \rightarrow in our model

ECC

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{e}}\left(i_{\mathrm{P}}\right)=-\frac{M_{\text {disc }}}{0.01 M_{\star}}\left(a\left(i_{\mathrm{P}}+i_{\mathrm{D}}\right)^{-2 b}+c i_{\mathrm{P}}^{-2 d}\right)^{-1 / 2} \\
& \mathcal{G}_{\mathrm{e}}\left(i_{\mathrm{P}}, M_{\mathrm{P}}, e_{\mathrm{P}}\right)=12.65 \frac{M_{\mathrm{P}} M_{\text {disc }}}{M_{\star}^{2}} e_{\mathrm{P}} \exp \left(-\left(\frac{\left(i_{\mathrm{P}} / 1^{\circ}\right)}{\tilde{M}_{\mathrm{p}}}\right)^{2}\right) \\
& a_{\mathrm{e}}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)=80 e_{\mathrm{P}}^{-2} \exp \left(-e_{\mathrm{P}}^{2} \tilde{M}_{\mathrm{p}} / 0.26\right) 15^{\tilde{M}_{\mathrm{p}}}\left(20+11 \tilde{M}_{\mathrm{p}}-\tilde{M}_{\mathrm{P}}^{2}\right) \\
& b_{\mathrm{e}}\left(M_{\mathrm{P}}\right)=0.3 \tilde{M}_{\mathrm{p}} \\
& c_{\mathrm{e}}\left(M_{\mathrm{P}}\right)=450+2^{\tilde{M}_{\mathrm{P}}} \\
& d_{\mathrm{e}}\left(M_{\mathrm{P}}\right)=-1.4+\sqrt{\tilde{M}_{\mathrm{p}}} / 6 .
\end{aligned}
$$

INCL

$$
\begin{aligned}
a_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & 1.5 \times 10^{4}\left(2-3 e_{\mathrm{P}}\right) \tilde{M}_{\mathrm{p}}^{3} \\
b_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & 1+\tilde{M}_{\mathrm{p}} e_{\mathrm{P}}^{2} / 10 \\
c_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & 1.2 \times 10^{6} /\left[\left(2-3 e_{\mathrm{P}}\right)\left(5+e_{\mathrm{P}}^{2}\left(\tilde{M}_{\mathrm{p}}+2\right)^{3}\right)\right] \\
d_{i}\left(e_{\mathrm{P}}\right)= & -3+2 e_{\mathrm{P}} \\
g_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & \sqrt{3 \tilde{M}_{\mathrm{p}} /\left(e_{\mathrm{P}}+0.001\right)} \times 1^{\circ} \\
\mathcal{F}_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}, i_{\mathrm{P}}\right)= & -\frac{M_{\text {disc }}}{0.01 M_{\star}}\left[a_{i}\left(\frac{i_{\mathrm{p}}}{1^{\circ}}\right)^{-2 b_{i}} \exp \left(-\left(i_{\mathrm{P}} / g_{i}\right)^{2} / 2\right)\right. \\
& \left.+c_{i}\left(\frac{i_{\mathrm{p}}}{40^{\circ}}\right)^{-2 d_{i}}\right]^{-1 / 2} .
\end{aligned}
$$

Model description

- 11000 simulations of 3 giant planet systems in the late stage of the disc (SyMBA, $2 \times 10^{\wedge} 5$ computational hours (CECI clusters))
- Type-II migration + improved damping effect (Bitsch et al. 2013)
- Planets with mass in [1, 10] $\mathrm{M}_{\text {Jup }}$ initially outside the snowline, on quasi-circular and coplanar orbits
- Different initial system configurations, planetary mass ratios, disc masses $\left(\mathrm{M}_{\text {disc }}\right.$ in $\left.[4,32] \mathrm{M}_{\text {Jup }}\right)$
- Exponential decrease of the disc mass, with a dispersal time of ~1 Myr

Objectives

- Impact of the eccentricity and inclination damping on the final system configurations ($a-e-I$)
- If non-coplanar systems, identification of dynamical mechanisms producing inclination increase

Dynamical mechanisms for inclination increase

Planet - planet scattering during the gas phase

- 1:3 MMR capture for the outer planets
- Subsequent increase of eccentricities
- When the inner pair approaches the 3:7 commensurability, destabilization of the whole system
- Ejection of the inner less massive body
- Remaining planets in inclined orbits with large eccentricity variations and large orbital separation

Dynamical mechanisms for inclination increase

Three-body mean-motion resonance

- Capture in a 1:2:4 Laplace resonance
- Subsequent increase of the eccentricities
- When the eccentricities are high enough, inclination-type resonance
- Strong damping: planets back to the midplane
- Exponential decay of the gas disc: inclination-type resonance produces high inclinations maintained for a long time

Semi-major axis distribution

Eccentricity distribution

Perfect agreement up to 0.35 , lack of highly eccentric orbits

Eccentricity distribution

Inclination distribution

3% of the systems have mutual inclination $>10^{\circ}$ at the dispersal of the disc

Long-term evolution

- Orbital adjustements due to planet-planet interactions can occur on a longer timescale AFTER the disc phase
- Additional subset Integration up to 100 Myrs
- Number of planets at 1.4d6 and 1d8

	1 planet	2 planets	3 planets
1.4 d 6 yrs	7%	50%	40%
1 d 8 yrs	12%	53%	32%

Long-term evolution

No significant change on the semi-major axis and eccentricity distributions

5\% of the systems have mutual inclination $>10^{\circ}$ on long-time scale

Summary

- Good agreement between our simulations and the observed population of extrasolar systems
- Eccentricities well-diversified at the dispersal of the disc, despite the strong damping exerted by the disc
- Very efficient damping exerted by the disc on the inclinations: most of the planets end up in the midplane
- Inclination-type resonance and planet-planet scattering events during/after the gas phase induce inclination excitation: 5% of highly mutually inclined systems $\left(>10^{\circ}\right)$ in our population
- Future observations: percentage of inclined systems could help to discriminate between the formation scenarios

Next step: Terrestrial planet formation

What is the impact of the eccentric and inclined giant planet population on the terrestrial planet formation process?

Terrestrial planet formation

Initial conditions for our simulations

Terrestrial planet formation

Preliminary results

- Semi-major axis vs eccentricity for a co-planar system (POP-II) initially in a 2:1 MMR
- We have 4 Earth-like planets in near-circular orbits
- One of them inside the habitable zone

Terrestrial planet formation

Preliminary results

- Semi-major axis vs inclination for a 3D system (POP-I)
- Giants with initial $\mathrm{I}_{\text {mut }}=30^{\circ}$
- At 100 Myrs, one planet with 0.2 Earth's mass inside the habitable zone with <1>~25 ${ }^{\circ}$

Formation of inclined
terrestrial planets is possible with the classical accretion theory

