The triple stellar system RV Crateris: spectroscopic orbit and accurate absolute dimensions

Torres, K.^{1,2}, Vaz, L.P.², Hensberge, H.¹, Armond, T.², Landin, N.R.^{2,3}, Giménez, A⁴., Clausen, J.V⁵, Helt⁵, B.E., Olsen⁵, E.H, Alencar, S.H.P.² and Garcia, J.M⁶.

- 1 Royal Observatory of Belgium, Brussels Belgium
- 2 UFMG Belo Horizonte Brazil
- 3 UFV Viçosa Campus Florestal Brazil
- 4 Centro de Astrobiología (CSIC-INTA) Madrid Spain
- 5 Niels Bohr Institute Copenhagen Denmark
- 6 Universidad Politecnica de Madrid Madrid Spain

Outline

- Introduction and Motivations

II – Methods of analysis and Observations

III – Results and Discussion

IV - Conclusions and Future work

Introduction: RV Crateris a triple system

Eclipsing binary (F6 + M2) + non-eclipsing wide component (F8)

0.5 m SAT telescope - La Silla, Chile 1987-89

total occultation of a smaller and hotter star (primary) by a larger and colder one (secondary)

Introduction: RV Crateris a triple system

Eclipsing binary (F6 + M2) + non-eclipsing wide component (F8)

Introduction: Motivation

I – Few accurate absolute dimensions det. for stars with M \leq 1 M $_{\odot}$

II - Probably a detached system

III - Short period + total primary eclipse
(determination of the fundamental properties, easier and robust);

IV – Colder component (secondary) is larger than the hotter one (primary) (secondary IS NOT on the Main Sequence stage).

Good candidate

to improve and extend tests of theoretical models

Introduction: Difficulties for determining the mass ratio

Feros échelle spectra 2.2 m ESO telescope - La Silla, Chile (2003)

The secondary is nowhere directly visible

disappears; lines increase in depth;

Observations

Echelle Spectra

41 high-resolution Feros Spectra
+1 spectrum at primary mid-eclipse (20 min)
2.2m ESO Telescope
La Silla, Chile (2003)

uvby light-curves

61 nights at 0.5 m SAT telescope La Silla, Chile 1987-89

Combined photometric-spectroscopic analysis

Results: Component spectra

The secondary contributes with ~9% of the total light and

the non-eclipsing component with ~49%.

Noise in the <u>secondary</u> spectrum reflects its small light contribution.

INT. RELAT.

Third component

Ephemeris Deviations versus eclipse cycle number

Third comp. (Porb=103.9 ± 6.3 yr)

*Light-travel-time effect on the eclipse timings.

*The wide third component belongs physically to the system.

Results: Fundamental parameters

2.2		Primary	Secondary
$ \longrightarrow $	Mass (M $_{\odot}$)	1.14 ± 0.07	0.51± 0.03
0.75	Teff (K)	6000 ± 120	3963 ± 120
	Radius (R_{\odot})	1.28 ± 0.03	1.70 ± 0.03
	K (km/s)	74	160.8
	q (MB/MA)	0.45 ± 0.05	
3	Log g (c.g.s.)	4.28 ± 0.06	3.69 ± 0.03
	Log L/L $_{\odot}$	0.28 ± 0.04	-0.20 ± 0.06
	Μν	3.981 ± 0.098	6.119 ± 0.014
	Distance (pc)	201 ± 8	

Evolutionary Status

Isochrones don't fit both components ...

Evolved system scenario is a possible solution ...

• Secondary transferred mass to the primary, in the past;

Secondary has ~ 99% of its Roche-lobe filled ! (close semi-detached system)

ATON 2.3 code D'Antona & Mazzitelli (1994) Landin et al (2006;2009;2010)

Conclusions and future work

- **Q.** We obtained <u>accurate fundamental</u> parameters of RV Crt, from a self-consistent combined photometric-spectroscopic analysis;
- b. We successfully determined the <u>radial velocities</u> of the <u>faintest</u> <u>component</u> (<u>9 %</u> of total light) of RV Crt in a direct and independent way (THANKS TO THE SPECTRA DISENTANGLING TECHNIQUE);
- C. The *third* component *belongs to the system* ;
- **d**. The <u>spectra of three components</u> of RV Crt were obtained and will be independently <u>analyzed as single stars</u>;
- e. Is <u>RV Crateris a quadruple</u> system ? ;
- f. Is <u>*RV Crateris*</u> an <u>evolved</u> system ? ;
- **G.** Obtain precise photometric measurements on the photographic plates to *improve the eclipse epochs*.

Thank

YOU and ...

BELSPO - Belgium Belgium Federal Science Policy

CNPq – Brazil National Counsel of Technological and Scientific Development

Fapemig – Brazil Research Support Foundation of the state of Minas Gerais

CAPES – Brazil Coordination for the Improvement of Higher Level Personnel