

Belgium and the EchO and SPICA space missions

Bart Vandenbussche Institute of Astronomy KU Leuven

The big infrared observatories timeline

SPICA – overview

- Scientific objectives
 - Formation and evolution of galaxies
 - Planetary formation processes
- Telescope: 3.2m , cooled to 6K
 - Superior sensitivity
- Core wavelengths: 5-210um
 - MIR-instrument
 - Far-infrared instrument (SAFARI)
- Orbit: Sun-Earth L2
- Mission life 3 years nominal, 5 years goal
- Weight 3.7 tonnes
- International mission: Japan, Europe, Korea, Taiwan

SPICA – the next far-IR mission

SPICA (< 5 K) \rightarrow "Cooled Herschel":

- Much lower background \rightarrow deep spectroscopy possible
- Closing the far-IR gap in the JWST ALMA sensitivity ballpark

SPICA – deep cosmological spectral surveys down to z=4

SPICA/SAFARI: Spectral survey of 1x1° in 900 hours down to 5E-19 W/m²

Millennium simulation z=1.4 (Springel et al 2006)

Herschel-SPIRE 250um – Hermes consortium

Compare: HERSCHEL-PACS : 1800 hours for 1'x1' to same depth

SPICA – mineralogy of protoplanetery and debris disks

- Large surveys of faint protoplanetary disks
 - sensitivity to solid state features
 - gas lines (H2O, OI, CII, ...)
- Spectral mapping of resolved objects \rightarrow determine snow line in debris disks

SPICA – the SAFARI instrument

- Imaging Fourier Transform Spectrometer FTS
- Wavelength coverage of ~34-210mm
- 3-detector arrays, TES bolometers
- Range not covered by JWST or ALMA!
- Field of view of 2' x 2'
- Spectroscopy R up to ~2,000 at 100 μm
- Photometry (R~3)
- Filter options for photometry under study
- Sensitivity:

Unresolved lines 5s-1hr: few x 10-19 W/m2 Photometry 5s-1hr : <50mJy

SPICA – programmatics

- Currently: Risk Mitigation phase @JAPAN
 - Following lessons learnt after ASTRO-G: resolve potential showstoppers as early as possible
 - Detailed studies thermal, EMC, pointing
- Phase-B kick-off ~spring 2013 after phase-up review
 - ESA: SPICA = Mission of opportunity needs to fit in Cosmic Vision, not as M-class
- SAFARI instrument: full funding secured in NL, largely in F, E
- Belgian involvement in SAFARI instrument
 - CSL: lab test equipment, delay line
 - MicroMega/CSL: delay line mechanisme
 - KU Leuven : calibration, observing modes, software
 - KU Leuven + UGent: science case

EChO – overview

- Scientific objectives
 - Spectroscopy of exoplanets
- Telescope: 1.26m, passive cooling at 45K
- Wavelengths
 - 0.4 5 micron, R=300
 - 5 to 16 micron, R=30
- Orbit: Sun-Earth L2, Soyuz launch from Kourou
- Mission life 3 years nominal, 5 years goal

EChO – science goals

- 0.4 16 micron differential spectroscopy of transiting exoplanet atmospheres
 - Chemical composition
 - Energy budget
 - Abundances
 - Thermal structure
 - Optical albedo
 - Temporal variation ⁵/₈
 - (Phase resolved)

 Requires ~10⁻⁴ – 10⁻⁵ photometric stability over eclipse (~10 hours)

EChO – science goals

Figure 2: A simulation of typical exoplanet transmission spectra for a hot Jupiter as would be produced from primary transit observations, showing the wealth of spectral features from a selection of key diagnostic molecules that fall into the 1 - 16 micron wavelength range. Spectra have been normalised to the maximum atmospheric contribution in the 1 - 16 micron band. Left-hand panel: simulated spectra at a resolution of ~ 300 - absorption features increase in strength and width as one moves to longer wavelengths; Central panel: a zoom-in of the 1 - 5 micron waveband – features are closely packed and a resolution of a few hundred is needed to separate the different components; Right-hand panel: simulated spectra smoothed to a resolution of a few tens (~30) at $\lambda > 5$ micron (~300 below), illustrating that many features can still be resolved with quite modest resolution. Note: R is used to denote resolution in the figures.

Temperature	Jupiters	Neptunes	Super-Earths
/ Size			
Hot > 700 K	F, G, K, M	G, K, M	Μ
Warm: 400-	F, G, K, M	G, K, M	М
700			
Temperate:	F, G, K, M	G, K, M	M2, M3, M4,
250-350			M5

If we would fly EchO today we already know suitable transiting exoplanet systems covering ~half of the sources in the reference sample Over the next, several surveys will deliver the 'missing' or better targets (MASCARA,...)

EChO – programmatics

- Currently: Phase-A study
 - 2 parallel industrial studies (spacecraft, telescope)
 - 2 parallel payload studies (joint work on science case)
- Current Belgian activities in payload study team
 - With colleagues in D, NL, CH, A
 - CSL: Assembly, Verification and Manufacturing study
 - KU Leuven: calibration & observing modes, science case, stellar variability study
- Further downselections in 2013, 2015 for implementation as M3 mission
 - In competitition with LOFT (Large Observatory for X-ray Timing), MarcoPolo-R (asteroid sample return) and STE-QUEST (space-time curvature)

Summary

- Substantial Belgian involvement in early studies of two big infrared observatories for the twenties
 - SPICA / SAFARI
 - EchO
- Continues on the path securing access to the big observatories cfr Herschel, JWST for the Belgian community at large

