On the stability of 3D exoplanetary systems

$\label{eq:Mara_VolPi} Mara VolPi \\ \mbox{Joint work with Anne-Sophie Libert and Arnaud Roisin}$

Current data ([exoplanets.eu]:

- 3781 planets
- 2829 systems, 629 multi-planetary

Current data ([exoplanets.eu]:

- 3781 planets
- 2829 systems, 629 multi-planetary

As for the exact structure...

Current data ([exoplanets.eu]:

- 3781 planets
- 2829 systems, 629 multi-planetary

As for the exact structure...

... WE HAVE NO IDEA!

LIMITATIONS OF THE DETECTION METHODS

RV-detected giant planetary systems

- no information about the inclinations
- only minimal masses $\frac{m}{\sin(i)}$

LIMITATIONS OF THE DETECTION METHODS

RV-detected giant planetary systems

- no information about the inclinations
- only minimal masses $\frac{m}{\sin(i)}$

GOAL

Identify possible 3D architecture of RV-detected systems

- Two-planet systems (gravitational forces)
- LAPLACE PLANE: constant reference plane
- Secular Approach: far from mean motion resonances

- Two-planet systems (gravitational forces)
- LAPLACE PLANE: constant reference plane
- Secular Approach: far from mean motion resonances

```
\downarrow Only 2 degrees of freedom
```

- Two-planet systems (gravitational forces)
- LAPLACE PLANE: constant reference plane
- Secular Approach: far from mean motion resonances

```
\begin{matrix} \downarrow \\ \text{Only 2 degrees of freedom} \\ \swarrow \end{matrix}
```

Nice thing #1

Less sensitivity to initial conditions

First order in the masses Secular Hamiltonian

$$H(D_2,\boldsymbol{\xi},\boldsymbol{\eta}) = \sum_{j=0}^{\text{ORDECC}/2} C_{j,\boldsymbol{m},\boldsymbol{n}} D_2^j \sum_{|\boldsymbol{m}|+|\boldsymbol{n}|=0}^{\text{ORDECC}-j} \boldsymbol{\xi}^{\boldsymbol{m}} \boldsymbol{\eta}^{\boldsymbol{n}}$$

where $\boldsymbol{\xi}, \boldsymbol{\eta}$ are heliocentric canonical Poincaré variables and D_2 is the Angular Momentum Deficit [Robutel 1995, Laskar 1997]

Importance of Lidov-Kozai resonance for 3D configurations

Lidov-Kozai resonance [Lidov 1961, Kozai 1962]

PROTECTIVE MECHANISM FOR HIGLY INCLINED SYSTEMS

- Typically appears at ~ 40° (depending on mass and semi-major axis ratios [Libert & Henrard 2007])
- ullet In the Laplace plane, argument of pericenter ω_1 librates around $\pm 90^\circ$

Importance of Lidov-Kozai resonance for 3D configurations

Lidov-Kozai resonance [Lidov 1961, Kozai 1962]

PROTECTIVE MECHANISM FOR HIGLY INCLINED SYSTEMS

- Typically appears at $\simeq 40^\circ$ (depending on mass and semi-major axis ratios [Libert & Henrard 2007])
- ullet In the Laplace plane, argument of pericenter ω_1 librates around $\pm 90^\circ$

The Tool

Secular Approximation Hamiltonian

The Systems

- Two planets
- Non resonant
- masses < 10M_J
- periods > 45 days
- semi-major axis < 10 AU</p>

Fixed parameters

All the observed orbital parameters ([exoplanets.eu]):

- semi-major axes
- eccentricities
- arguments of the pericenter

Hypothesis

Same inclination of the orbital planes, $i_1 = i_2 = i$

Changing parameters

- *i* from 5° to 90°
- masses change: multiplying factor $1/\sin(i)$
- i_{mut} from 0° to 80°

Validation of the analytical approach

Validation of the analytical approach

Very good agreement with numerical integrations up to very high mutual inclination

Question 1

Detection of Lidov-Kozai resonance regions?

Question 1

Detection of Lidov-Kozai resonance regions?

Lidov-Kozai resonance regions

Maximal libration of ω_1

Mara Volpi

i(deg)

Lidov-Kozai resonance regions

Maximal libration of ω_1

i(deg)

System	min i _{mut} (°)	min <i>i</i> (°)	Lidov-Kozai (%)
HD 11506	40.5	30	17
HD 117618	_	_	_
HD 12661	42.5	30	20
HD 134987	45.5	40	13
HD 142	44	30	11
HD 154857	40.5	30	10
HD 1605	36	20	12
HD 163607	41	30	16
HD 164922	43	30	14
HD 169830	45	25	22
HD 177830	48.5	25	21
HD 207832	50	35	17
HD 37605	41	25	7
HD 4732	49	35	12
HD 74156	41	30	20
HD 85390	40	30	21

Table: Summary of the results for all the systems. Minimum values of i_{mut} and i (in degrees) for which we register the libration of the angle ω_1 ; percentage of points that show a Lidov-Kozai resonance; percentage of points classified as chaotic by the MEGNO.

Question 2

Possible stable 3D configurations?

Parametric study through chaos indicator: MEGNO

Let $H(\mathbf{p}, \mathbf{q})$ with $\mathbf{p}, \mathbf{q} \in \mathbb{R}^N$ be an autonomous Hamiltonian of N degrees of freedom. Being $\mathbf{x} = (\mathbf{p}, \mathbf{q}) \in \mathbb{R}^{2N}$, the Hamiltonian vector field can be expressed as

$$\dot{\boldsymbol{x}} = J \nabla_{\boldsymbol{x}} \mathcal{H} \boldsymbol{x} \, .$$

Deviation vectors $\delta(t)$ satisfy the variational equations $\dot{\delta}(t) = J \nabla_x^2 \mathcal{H} \delta(t)$, being $\nabla_x^2 \mathcal{H}$ the Hessian matrix of the Hamiltonian.

The limit for $t
ightarrow \infty$ provides a good characterization of the orbits. In fact, we have

- $\lim_{t\to\infty} \bar{Y}(t) = 0$ for stable periodic orbits,
- $\lim_{t\to\infty} \bar{Y}(t) = 2$ for quasi-periodic orbits and for orbits close to stable periodic ones,
- for irregular orbits, $\bar{Y}(t)$ diverges with time.

Parametric study through chaos indicator: MEGNO

Let $H(\mathbf{p}, \mathbf{q})$ with $\mathbf{p}, \mathbf{q} \in \mathbb{R}^N$ be an autonomous Hamiltonian of N degrees of freedom. Being $\mathbf{x} = (\mathbf{p}, \mathbf{q}) \in \mathbb{R}^{2N}$, the Hamiltonian vector field can be expressed as

$$\dot{\mathbf{x}} = J \nabla_{\mathbf{x}} \mathcal{H} \mathbf{x}$$
.

Deviation vectors $\delta(t)$ satisfy the variational equations $\dot{\delta}(t) = J \nabla_x^2 \mathcal{H} \delta(t)$, being $\nabla_x^2 \mathcal{H}$ the Hessian matrix of the Hamiltonian.

The limit for $t o \infty$ provides a good characterization of the orbits. In fact, we have

- $\lim_{t\to\infty} \bar{Y}(t) = 0$ for stable periodic orbits,
- $\lim_{t\to\infty} \bar{Y}(t) = 2$ for quasi-periodic orbits and for orbits close to stable periodic ones,
- for irregular orbits, $\bar{Y}(t)$ diverges with time.

Validation

HD11506: Analytical

Mara Volpi

FNRS Contact Group Meeting - 4th June 2018 Astronomy Day - Royal Observatory 15 / 18

MEGNO and 3D stability

Not all values of mutual inclination are compatible with stability for all the systems

MEGNO, generally speaking:

- Stability: low values of *i_{mut}* and Lidov-Kozai regions
- Chaos: surrounding Lidov-Kozai regions at high values of imut

WE HAVE SHOWN THAT

- With our secular approximation of the Hamiltonian we study 3D configurations and determine Lidov-Kozai resonance regions
- The systems could be in regular 3D configurations, in most cases up to high mutual inclination i_{mut} (some up to $75^{\circ} 80^{\circ}$!)
- Most of the systems are compatible with significant Lidov-Kozai resonance regions

WE HAVE SHOWN THAT

- With our secular approximation of the Hamiltonian we study 3D configurations and determine Lidov-Kozai resonance regions
- The systems could be in regular 3D configurations, in most cases up to high mutual inclination i_{mut} (some up to $75^{\circ} 80^{\circ}$!)
- Most of the systems are compatible with significant Lidov-Kozai resonance regions

Perspectives

 $\label{eq:Extend the study to close-in planets} include General Relativity \rightarrow how Lidov-Kozai regions change?$

THANK YOU FOR YOUR ATTENTION!